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Introduction

Automatic differentiation tools (ADTs) are gaining popularity because they 
dramatically reduce the theoretical and programming effort required to compute 
the partial derivatives of extremely complex nonlinear equations. With the aid of 
these tools it is possible to compute exact derivatives even when the resulting 
formulæ would be too complex to be derived by hand without making errors. It is 
also possible to take into account different code paths. The time required to obtain 
the derivatives is reduced, because it is no longer necessary to write the related 
formulæ and then the corresponding code, but only to write the code required to 
compute the function to be derived. The derivatives are also almost error-free 
because the manual steps are reduced, and they can be used to validate analytical 
derivatives. For all of these reasons, the use of automatic differentiation tools can 
help SMEs in reducing the development and validation burden when dealing with 
new, self-developed simulation codes, thus reducing the time to market of new, 
advanced products eventually.

Some of the available tools are able to perform a static analysis of the code, and to 
write the code required for the evaluation of  the partial derivatives. The code 
generated by these tools should be very efficient, because the derivative code can 
be written without making use of virtual function calls, and can be well optimized 
by the compiler. Unfortunately, as shown in the first report, almost all the freely 
available tools that are able to analyse a given program are limited to some version 
of the FORTRAN language. Other tools perform the differentiation at run time, after 
having recorded all  the floating point operations using a  so-called “tape”. The 
library CppAD [2], a COIN-OR project [3], was selected among these tools for the 
ANTASME  automatic  differentiation  WP.  The  library  has  recently  changed its 
licensing scheme to a double license, the Common Public License Version 1.0 (CPL) 
or the GNU General Public License Version 2 (GPL). Because the GPL is the same 



license of the multibody code MBDyn, it is possible to distribute a modified MBDyn 
version together with CppAD.

This document describes the development of an automatic differentiation enabled 
version of the multibody code MBDyn [1] using the freely available library CppAD 
[2]. Mbdyn is an implicit integration code; that is, at each time step, it has to solve 
a set of nonlinear equations, f(x)=0. The equations are solved by means of the 
iterative Newton-Raphson method, so requiring  the availability of  the Jacobian 
matrix  J=∂ f x /∂ x .  The  equations,  as  well  as  the  Jacobian  matrix,  are 
computed assembling the contributions of different entities, such as nodes, bodies 
with inertia, deformable elements, constraints and so on. In this report, we will 
focus our attention on the use of ADTs for the rapid development of new, complex 
elements.  For  this  reason, the  scope of  the  work  is  the  linearisation  of  the 
contribution of a single entity, and not of the whole set of nonlinear equations that 
are solved by the multibody code.

Implementation steps

In order to perform the automatic differentiation of an arbitrary function f(x) 
the library requires that 

1. the values  of the independent variables are stored in a vector containing 
CppAD::AD<double> elements,  say  x_indep,  where  the  template 
CppAD::AD<class T> is defined by the library;

2. an analogous vector, say y_dep, is defined in order to store the result of the 
computations;

3. the function CppAD::Independent(x_indep) is called; after this step, all the 
computations involving the independent variables stored inside x_indep are 
taped,  and  the  code  should  compute  y = f(x,  possible  additional 
parameters);

4. a variable  f of type  CppAD::ADFun<doublereal> is created, stopping the 
taping;

5. at this point, one can define two vectors of doubles, say x and J, and store 
inside  J the Jacobian matrix of  f(x),  J = f.Jacobian(x);  the elements 
∂ f i/∂ x j  of the Jacobian matrix  are stored inside the vector  J with the 

index j  varying faster, i.e. by rows.

The code corresponding to steps 1-4 is reported below

//Define the independent and dependent vectors
std::vector<CppAD::AD<double> > x_indep(11), y_dep(11);
//Here we must fill x_indep with the current x values
//Identify the independent variables
CppAD::Independent(x_indep);
//Compute f(x_indep, additional parameters) and store the result 

//inside y_dep
AssVec(x_indep, y_dep, dCoef);
//Stop the taping and define the function f



CppAD::ADFun<double> f(x_indep, y_dep);

If the function f(x) is computed following the steps outlined above then it is 
possible to compute the Jacobian matrix J for a given (possibly different) value of 
the independent vector, as per step 5 with this simple code:

//define the independent and Jacobian matrix vectors
std::vector<double> x(11), J(11 * 11);
//set the values of x (here copy from x_indep)
for (int i=0; i<11; i++) x[i] = CppAD::Value(x_indep[i]);
//compute the Jacobian matrix an store the result in J
f = f.Jacobian(x)

In  theory, the  above steps are  the  only  ones  required to  perform the 
automatic  differentiation of an arbitrarily complex function y =  f (x).  In practice, 
however, it must be noted that all the computations involved in the evaluation of f 
(x),  and all the intermediate results must be performed and stored using not the 
standard double type, but CppAD::AD<double> variables.

MBDyn performs most of its computations using two custom classes, called 
Mat3x3 and  Vec3, representing a 3x3 matrix and a 3 element vector, respectively. 
In order to allow the coexistence of standard and automatic-differentiated elements 
it was therefore necessary to templatize all the matrix and vector libraries in such a 
way that the same code could be used with the double or the CppAD::AD<double> 
data type, and that the code of all the already existing elements of MBDyn would 
be left untouched.

Another somewhat intrusive change to the code was required because MBDyn 
makes use of a whole set of internally defined scalar functions of scalar variables. 
Almost all these functions had to be modified as well in order to allow the use of 
the CppAD::AD<double> data type and the computations taping.

MBDyn Elements with ADT

Among the element library of MBDyn, three structural elements, namely the 
“revolute rotation”, the “wheel2” and the “gimbal” joint,  were modified in order to 
provide an ADT-computed Jacobian matrix. The first element is a rather simple 
joint  that allows the relative rotation of two nodes along a given axis without 
imposing any constraint on their relative positions. The code implementing the 
exact linearization of this element is already available in MBDyn. The automatic 
differentiation  version of  the  element has  been developed only  to  assess the 
accuracy of  the  automatically  computed  Jacobian matrix  and  to  compare the 
computational  time  required  to  perform  a  simple  simulation.  The  other  two 
elements are rather complex joints, and the evaluation of their function,  f(x), is by 
no means straightforward.

The “wheel2” element is an element that computes the forces exchanged 
between a rolling wheel and the ground. It can simulate impact conditions, such as 
during the very first phases of an aircraft  landing simulation, braking and lateral 
sliding. The evaluation of the forces exchanged between the wheel and the ground 



is performed in a complex subroutine, with about 200 lines of code and lot of 
different code paths, functions of the wheel-ground relative position and velocity. 
For these reasons, the “wheel2” element, as currently available with MBDyn, does 
not provide any means to evaluate the Jacobian matrix of the forces, as the coding 
effort was estimated to be excessive, and thus implies an explicit integration of the 
related equations of motion.

The “gimbal” joint is a joint that allows  the rotation between two nodes about two 
orthogonal  axes.  The  angular  velocity  about  the  remaining  axis  is  preserved 
regardless of the relative angle between the two nodes. It is a joint that is often 
used in the helicopter field in order to simulate the rotor of modern convertiplanes. 
The functional of the “gimbal” joint heavily depends on the compositions of finite 
rotation tensors  R∈SO3  and on the underlying tangent algebra . Due to its 
complexity, only an approximate Jacobian matrix has been developed so far.

For all the joints, the code that evaluates the function f(x) was templatized is 
such a  way  that the same code can used to  compute  the function  using the 
standard  double  or the CppAD::AD<double> data type. This allows to call the fast 
double version every time the code needs only to evaluate the function, and the 
CppAD::AD<double> version every time the Jacobian matrix is required. This step, 
together with the general modifications made to the MBDyn math library, is almost 
all that is needed to build an automatically differentiated element. The hand-coded, 
approximate Jacobian matrix code is  compared to the automatic  differentiation 
code in Tables 1 and  2 for the “revolute rotation” and “gimbal” joints, respectively.

//set up phase
Mat3x3 R1hTmp(pNode1->GetRRef()*R1h);
Mat3x3 R2hTmp(pNode2->GetRRef()*R2h);
Vec3 MTmp = M*dCoef;
Vec3 e3a(R1hTmp.GetVec(3));
Vec3 e1b(R2hTmp.GetVec(1));
Vec3 e2b(R2hTmp.GetVec(2));
MTmp = e2b*MTmp.dGet(1)-e1b*MTmp.dGet(2);
Mat3x3 MWedgee3aWedge(MTmp, e3a);
Mat3x3 e3aWedgeMWedge(e3a, MTmp);
WM.Sub(1, 1, MWedgee3aWedge);
WM.Add(1, 4, e3aWedgeMWedge);
WM.Add(4, 1, MWedgee3aWedge);
WM.Sub(4, 4, e3aWedgeMWedge);    
Vec3 Tmp1(e2b.Cross(e3a));
Vec3 Tmp2(e3a.Cross(e1b));
for (int iCnt = 1; iCnt <= 3; iCnt++) {
   doublereal d = Tmp1.dGet(iCnt);
   WM.PutCoef(iCnt, 7, d);
   WM.PutCoef(3+iCnt, 7, -d);
   d = Tmp2.dGet(iCnt);
   WM.PutCoef(iCnt, 8, d);
   WM.PutCoef(3+iCnt, 8, -d);
}   
for (int iCnt = 1; iCnt <= 3; iCnt++) {
   doublereal d = Tmp1.dGet(iCnt);
   WM.PutCoef(7, iCnt, d);
   WM.PutCoef(7, 3+iCnt, -d);
   d = Tmp2.dGet(iCnt);
   WM.PutCoef(8, iCnt, -d);
   WM.PutCoef(8, 3+iCnt, d);
}   

typedef CppAD::AD<doublereal> T;
std::vector<T> x_indep(8, 0.), y_dep(8);
x_indep[6] = M[0];
x_indep[7] = M[1];
CppAD::Independent(x_indep);
AssVec(x_indep, y_dep, dCoef);
CppAD::ADFun<doublereal> f(x_indep, y_dep);
std::vector<doublereal> x(8);
for (int i=0; i<8; i++) {
   x[i] = CppAD::Value(x_indep[i]);
}
std::vector<doublereal> J(8*8);
J = f.Jacobian(xx);
for (integer row = 0; row < 8; row++) {
   for (integer col = 0; col < 8; col++) {
      WM.PutCoef(row+1, col+1, -J[row*8 + col]);
   }
}

Table 1: Exact hand-written (left) and automatic differentiation (right) Jacobian 



matrix code for the "revolute rotation" joint.

Accuracy and timings

A first simulation was performed using the “revolute rotation” joint; it allows 
to verify that the Jacobian matrices produced by the hand-written code and by the 
ADT library are identical within machine precision.
The model is very simple: a node, without mass, is completely constrained with a 
“clamp” joint; a second node, with an initial angular velocity, is constrained to the 
first node by a “spherical” and a “revolute rotation” joint.  Reaction forces and 
moments are null throughout the simulation. The number of nonlinear iterations, as 
well as the joint Jacobian matrices, are equal for the two models, as expected.
The simulation with the ADT version of the joint takes about 4.5 s of CPU time on 
an Athlon XP 2400+ with a CPU clock of 2 GHz, while it takes only about 3.7 s, on 
the same PC, with the original version of the joint. As expected, the hand-written 
code is computationally more efficient, because of the taping and of the run-time 
differentiation overhead that plagues the ADT library.
Mat3x3 Ra(pNode1->GetRRef()*R1h);
Mat3x3 RaT(Ra.Transpose());
double dCosTheta = cos(dTheta);
double dSinTheta = sin(dTheta);
double dCosPhi = cos(dPhi);
double dSinPhi = sin(dPhi);
WM.Add(1,6+1,Ra);
WM.Sub(3+1,6+1,Ra);
Mat3x3 MTmp(Ra*(M*dCoef));
WM.Sub(1,1,MTmp);
WM.Add(4,1,MTmp);
MTmp = RaT*dCoef;
WM.Add(6+1,1,MTmp);
WM.Sub(6+1,3+1, MTmp);
WM.IncCoef(6+1, 9+1, dSinTheta*dSinPhi);
WM.IncCoef(6+2, 9+1, 1. + dCosPhi);
WM.IncCoef(6+3, 9+1, dCosTheta*dSinPhi);
WM.IncCoef(6+1, 9+2, dCosTheta);
WM.DecCoef(6+3, 9+2, dSinTheta);
WM.IncCoef(9+1, 6+1, dSinTheta*dSinPhi);
WM.IncCoef(9+1, 6+2, 1. + dCosPhi);
WM.IncCoef(9+1, 6+3, dCosTheta*dSinPhi);
WM.IncCoef(9+1, 9+1, dSinPhi*(dCosTheta*M(1) - 
dSinTheta*M(3)));
WM.IncCoef(9+1, 9+2, dCosPhi*(dSinTheta*M(1) + 
dCosTheta*M(3)) - dSinPhi*M(2));
WM.IncCoef(9+2, 6+1, dCosTheta);
WM.DecCoef(9+2, 6+3, dSinTheta);
WM.DecCoef(9+2, 9+1, dSinTheta*M(1) + 
dCosTheta*M(3));

typedef CppAD::AD<doublereal> T;
std::vector<T> x_indep(11, 0.), y_dep(11);
x_indep[6] = M[0];
x_indep[7] = M[1];
x_indep[8] = M[2];
x_indep[9] = dTheta;
x_indep[10] = dPhi;
CppAD::Independent(x_indep);
AssVec(x_indep, y_dep, dCoef);
CppAD::ADFun<doublereal> f(x_indep, y_dep);
std::vector<doublereal> xx(11), J(11 * 11);
for (int i=0; i<11; i++) xx[i] = 
CppAD::Value(x_indep[i]);
J = f.Jacobian(xx);
for (int row = 0; row < 11; row++) {
  for (int col = 0; col < 11; col++) {
    WM.PutCoef(row+1, col+1, -J[row*11 + col]);
  }
}

Table 2: Approximated hand-written (left) and automatic differentiation (right) 
Jacobian matrix code for the "gimbal" joint.

The second simulation  was performed using the  “wheel2” element.  This 
simple model has a wheel that, at the beginning of the simulation, has an initial 
horizontal velocity but a null angular velocity. The vertical position of the wheel and 
the vertical contact force change during the simulation (), even losing contact with 
the terrain three times; this happens because the wheel weight is not  balanced in 



the initial configuration. Throughout the simulation, an increasing couple is applied 
to the wheel. The initial horizontal velocity quickly spins up the wheel; after that, 
the increasing couple reverses its angular velocity (Figure 1).  Figure 3 shows that 
the number of iterations required for the convergence, at each time step, of a 
complex simulation with a “wheel2” joint is drastically reduced if we make use of 
the ADT-derived Jacobian matrix. The simulation of 2.5 seconds, with a fixed time 
step of 1.E-3 s, requires a total of 8084 and 10709 nonlinear solver iterations with 
and without the Jacobian matrix, respectively. Unfortunately, the total computation 
time is heavily affected by the taping and the run-time automatic differentiation, so 
that, even performing fewer iterations, the simulation with the ADT version of the 
joint takes about 7.7 s of CPU time on an Athlon XP 2400+ with a CPU clock of 2 
GHz, while takes only about 6.1 s, on the same PC, with the original version of the 
joint. Note, however, that, despite the overhead due to the run-time construction 
of  the Jacobian matrix, the required computational  times are not  dramatically 
different. Moreover, the reduced number of iterations can substantially reduce the 
total computational time of more complex models.

Figure 1: Wheel angular velocity.



These findings are confirmed by a simulation performed using the “gimbal” joint. In 
this model (Figure 4), a body is kept at a constant angular velocity of 25 rad/s 
around a fixed axis, while a second body is connected to the first one by a gimbal 
and a spherical joint. The two body positions are also constrained to lie on a  plane 
which contains the first body rotation axis; the relative positions of the two bodies 
are made to change during the simulation. The number of nonlinear iterations 
required, with a fixed time step of 1.E-3 s, is shown in Figure 5; the simulation with 
the hand-written Jacobian matrix takes 27799 iterations and about 20 s of CPU 
time, while the simulation with the ADT Jacobian matrix takes 18998 iterations and 
about 24 s. With this case it is possible to compare the behavior obtained with a 
larger time step of 1.E-2 s (the “wheel2” example does not converge using larger 
time steps). With the larger time step, the number of iterations required to reach 
convergence is much lower with the ADT joint  than with the hand-written one 
(Figure 6). The total number of iterations is equal to 2881 and 6286, respectively, 
and this difference is so huge that the total computational time of the ADT joint, of 
about 3 s, is lower than that of the hand-written one, that takes about 3.6 s. Of 
course, the results are the same, because the code that computes the function f(x) 
is unchanged.

Conclusions

The development of the ADT version of the multibody code MBDyn was not as 

Figure 2: Wheel vertical position (left) and reaction force (right).



straightforward as anticipated at  the beginning of  the work. As expected, the 
elements  with  run-time  ADT  capabilities  are  slower  than  the  corresponding 
elements with hand-coded Jacobian matrices. However, ADT techniques allow the 
rapid development of new, complex elements, without requiring the burden of the 
linearization of nonlinear equation contributions, still guaranteeing the correctness 
of  the linearization even when the function evaluation can take different  code 
paths. For these reasons, and because the run-time cost of the ADT library is not 
excessive, the rapid development of new, complex elements can benefit from these 
techniques. This is even more important with realistic, complex models, were a 
reduced number of  iterations,  even at  the expense of  a  slow Jacobian matrix 
evaluation  for  one  or  two  elements,  can  substantially  reduce  the  total 
computational time.
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Figure 3: “Wheel2” joint iterations count required for convergence



Figure 5: "Gimbal" joint iterations count required for convergence, dt = 1.E-3 s

Figure 4: Sketch of the model using the gimbal joint.



Figure 6: "Gimbal" joint iterations count required for convergence, dt = 1.E-2 s
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