MultiBody Dynamics Analysis Software on Real Time Distributed Systems

Pierangelo Masarati
Marco Morandini

Dipartimento di Ingegneria Aerospaziale
Politecnico di Milano (Italy)

One-day meeting on:
RTAI, present and future
July 8th, 2004
Outline

- Objectives and approach:
 - problem description & requirements
 - software requirements
- Key results:
 - software development
 - model rationalization
 - software performances improvement
- Concluding remarks
Objective

- Develop a General Purpose Real-Time experiment simulator:
 - hard real-time capabilities
 - minimal modeling limitations
 - commonality of modeling
- Develop real-time models and controls for a wide spectrum of applications
 - model accuracy
 - analysis accuracy
 - distributed control
Real-Time Simulation

• Requirements:
 • exploit OS multitask/memory protection paradigms
 • use generic libraries (algebra, communication, ...)
 • use general purpose simulation software
 • use/develop Open-Source software
 • run on "low" cost platforms (dual Athlon)
Real-Time Simulation

• Proposed solution:
 • RTAI (Real-Time Application Interface) for Linux
 http://www.rtai.org/
 • RTnet (Hard Real-Time Networking for Linux/RTAI)
 http://www.rts.uni-hannover.de/rtnet/
 • MBDyn (MultiBody Dynamics)
 http://www.mbdyn.org/
 • RTAILab data acquisition/control code generation
 http://www.rtai.org/
Real-Time Sim.: Status

- Real-time software:
 - Linux/RTAI mature (industry level applications)
 - simulation software real-time enabled
- Multibody software development:
 - MBDyn multibody mature, multidisciplinary
 - development lines drawn, partially investigated
- Multibody model of COMAU SMART robot:
 - redundant coordinate set model (>100 unknowns)
 - dynamic friction models
 - timings estimates available (up to 2KHz on Athlon 2.4 Ghz equivalent)
 - distributed control via RTAILab/RTnet
Real-Time Simulation

Traditional real-time simulations:
- minimal set (ODE)
- explicit integration
- specialized topology
- bound to OS internals

- performance limitations
- code/tool commonality
- modeling flexibility

Proposed real-time solution:
- redundant set (DAE)
- implicit integration
- general topology
- POSIX compliant

• fast, fast, fast!
• difficult to extend
• code/tool duplication
Real-Time Enabled Software

Conventional simulation software

- Avoid / wrap system calls
- Statically preserve stack / initialize resources
- STL containers: memory pools
- Insert few task execution / control statements
- Add real-time I/O communication provisions

\sim 180,000 \text{ LOC}

Real-time enabled simulation software
Real-Time Enabled Software

- Distributed Real-time software:
 - hard RTnet for control loop
 - soft RTnet for monitoring

- Control Monitoring (RTAI-Lab)
- Process Control (Matlab Simulink/RTW)
- MultiBody Analysis (MBDyn)
MBDyn: Features

- Dynamic analysis of deformable multibody mechanical systems
- Integrated analysis of hydraulic, electric and generic, control related components
- Aeroelastic, rotorcraft-oriented analysis
- Open-Source http://www.mbdyn.org/
MBDyn: Analysis Description

- Dynamics analysis: solution of Initial Value problems (IVP)
- Static/kinematic analysis modeled as downgraded dynamics analysis
- Eigenanalysis by Proper Orthogonal Decomposition of time series

- Typical analysis procedure consists in performing "virtual experiments"
MBDyn: Analysis Description

Libraries:
- Mechanical

Aerodynamic
- Absolute/relative position, orientation, vel., acc.
- Nonlinearities: geometry, contacts, tires, friction
- Interaction with deformable bodies

Hydraulic
- CFD coupling
 - Rigid/deformable blade element
 - Rotor inflow
 - State-space on modal bodies

Controls
- Pipes, actuators, valves, sources, sinks
 - Electric motors
 - Strain, displacement, acceleration sensors
 - System modeling/signal processing elements
 - Programmable elements
Real-Time Experiment

Virtual Experiment as a cheap and safe replacement of experiment setup

Real-Time Virtual Experiment
Simulation Improvements

Software:
- sparse matrix/vector handling during assembly
- sparse solution handling
- assembly parallelization
- solution parallelization
- hardware improvements

Model:
- topology rationalization
- constraints idealization
- deformability reduction (and elimination)
Software Improvements

Guidelines:
• beneficial for standard solution as well
• assembly/solution: ~ 70-80 vs. 25-15 % CPU time

Results: speed-up
• assembly in compressed matrix form: -10/-20 %
• multi-threaded assembly: -0/15 %
• dense solver: +50/-40 %
• iterative solver (worst case limitation)
• multi-threaded solution (n.a. yet)

Overall: -20/-45 %
Comau robot model

Model description:
- rigid bodies, plane rotation joints
- friction
- 6 DOFs, 120 unknowns
- from 500 Hz to 2kHz
 (Athlon XP 2400+)
Comau control and monitor

Mandatory settings:
- Real-time: NO
- Timing: Internal/One-shot
- Priority: 0
- Final-time: 0 (Forever)
- CPU map: 1

0:007 hand_port 18
write: MAX_MDBM_TASK = 5
write: Connecting to MDDBM task!

sfun_abdn_con_write:
- node: 110960
- port: 16
- mibbase: 0xeef92570
- max dbid: 30800
- max: 0xeef2340
- max channel: 4
- MAX_SAMPLE_TIME: 5000000

sfun_abdn_con_read:
- Host name: 192.168.0.1
- node: 110960
- port: 17
- mibbase: 0xeef92570
- max dbid: 30800
- max: 0xeef2340
- max channel: 4
- MAX_SAMPLE_TIME: 5000000

Target info

Model name: pendulum_control
Base sample time: 0.008000 [s]
Number of sample times: 1
Sample time 0: 0.008000 [s]
Sample time 1: 0.005000 [s]

Target is waiting to start.
Target is running.
Concluding Remarks

- General purpose real-time multibody simulation is feasible
- Performances on robot simulations meet requirements
- There is room for software/model improvements:
 - electric motors
 - feed-forward
 - parallel solution
- Real-time software optimization beneficial for conventional GP simulations as well
Previous works

- Acknowledgements to Matteo Martegani, Michele Attolico and Giuseppe Quaranta.