Politecnico di Milano – Ingegneria Industriale

Analisi e Geometria 1

Primo compito in itinere – 8 Novembre 2021

Cognome:		Compito A
Nome:	Matricola:	
Punteggio Totale:	Nr. di iscrizione:	
1. (1 affermazione corretta, 1 punto) Qual	e delle seguenti affermazioni è ver	a?
(a) In \mathbb{R} , una successione di numeri ra	zionali non può convergere a $\sqrt{2}$.	\circ
(b) Se $x, y \in \mathbb{R}$, $x < y$, esiste $c \in \mathbb{Q}$ tal	te che $x < c < y$.	Ø
(c) Se $x, y \in \mathbb{R}$, $x < y$, esiste $c \in \mathbb{Z}$ tale	e che $x < c < y$.	\bigcirc
(d) In \mathbb{R} , ogni successione convergente		0
(e) Nessuna delle altre affermazioni è	corretta.	\bigcirc
2. (1 affermazione corretta, 1 punto) Siano positivo) nel modo seguente: $a_n = n \log n$		nite (per n intero
(a) $\lim_{n \to +\infty} a_n = +\infty$ e $\lim_{n \to +\infty} b_n = 1$		\bigcirc
(b) $\lim_{n \to +\infty} a_n = 0$ e $\lim_{n \to +\infty} b_n = \frac{e}{2}$		\circ
(c) $\lim_{n \to +\infty} a_n = 1$ e $\lim_{n \to +\infty} b_n = 0$		\bigcirc
(d) $\lim_{n \to +\infty} a_n = 1$ e $\lim_{n \to +\infty} b_n = e^{-1/2}$		$ \mathfrak{C} $
$n \to +\infty$ $n \to +\infty$ (e) Nessuna delle altre affermazioni è	corretta.	0
3. (1 affermazione corretta, 1 punto) Ponia	amo: $\mathbb{C} \xrightarrow{f} \mathbb{C}$, $f(z) = z^4$ per ogr	ni $z \in \mathbb{C}$.
(a) Esiste un elemento nel codominio	che ha esattamente 2 controimma	gini.
(b) Esiste un elemento del codominio	che ha infinite controimmagini.	\bigcirc
(c) f è invertibile.		O
(d) f è suriettiva.		Ø
(e) f è iniettiva.		\bigcirc
4. (1 affermazione corretta, 1 punto) Cons	sideriamo il numero complesso $z =$	$= \frac{(1-i)^6}{(1+i\sqrt{3})^2}.$
(a) $ z = 2$		$ \emptyset $
(b) $ z = \frac{1}{2}$		\bigcirc
(c) $\arg z = \frac{\pi}{4}$		\bigcirc
(d) $\arg z = \frac{4}{2}$		\bigcirc
(d) $\arg z = \frac{1}{2}$ (e) Nessuna delle altre affermazioni è	corretta	
(e) riessulla delle altre allerniazioni e	correcta.	

- 5. (1 affermazione corretta, 1 punto) Siano $I \subseteq \mathbb{R}$ un intervallo, $I \xrightarrow{f} \mathbb{R}$ una funzione continua, J = f(I) l'immagine di f.
 - (a) Se I è limitato superiormente, allora J è limitato superiormente.
 - (b) Se $J = \mathbb{R}$, f è invertibile.
 - (c) f assume massimo assoluto e minimo assoluto.
 - (d) J è un intervallo.
 - (e) Nessuna delle altre affermazioni è corretta.
- 6. (1 affermazione corretta, 1 punto) Il limite $\lim_{x\to 0} \frac{\sin(x^2)}{\log_e(1+x^2) + e^{x^2} 1}$ vale:
 - (a) 0
 - (b) 1
 - (c) 2
 - $(d) \frac{1}{2}$
 - (e) Nessuna delle altre affermazioni è corretta.
- 7. (2 affermazioni corrette; 2 punti) Definiamo: $\mathbb{R} \xrightarrow{f} \mathbb{R}$, per ogni $x \in \mathbb{R}$

$$f(x) = \begin{cases} 3x + x^2 \sin \frac{1}{x} & \text{se } x \neq 0 \\ 0 & \text{se } x = 0 \end{cases}$$

- (a) f non è derivabile in 0.
- (b) f è derivabile in 0 e f'(0) = 0.
- (c) f è derivabile in 0 e f'(0) = 3.
- (d) Per $x \neq 0$, $f'(x) = 3 + 2x \sin \frac{1}{x} \cos \frac{1}{x}$.
- (e) Per $x \neq 0$, $f'(x) = 3 + 2x \sin \frac{1}{x} + x^2 \cos \frac{1}{x}$.
- 8. (2 affermazioni corrette; 2 punti) Sia f la funzione così definita:

$$\mathbb{R} \xrightarrow{f} \mathbb{R}, \qquad \forall x \in \mathbb{R} \quad f(x) = e^{3x^4 - 4x^3}$$

- (a) $\forall x \in \mathbb{R} \quad f''(x) > 0$
- (b) $x_0 = 1$ è un punto di minimo locale per f.
- (c) $x_0 = 1$ è un punto di massimo locale per f.
- (d) Esiste un punto $a \in (0,1)$ in cui f''(a) = 0.
- (e) f è strettamente crescente su \mathbb{R} .