Teoria	Es. 1		Es. 2	Tota	ale
Analisi e Geometria 1 Primo compito in itinere 6 novembre 2018-Compito F (II turno)		Docente:			Numero di iscrizione all'appello:
Cognome:		Nome:			Matricola:

Istruzioni: Tutte le risposte devono essere motivate. Gli esercizi devono essere svolti su questi fogli, nello spazio sotto il testo e sul retro. Le risposte devono essere riportate nelle caselle. I fogli di brutta non devono essere consegnati.

Prima	parte	(7)	punti)
-------	-------	-----	--------

(A) Scrivere la definizione di:	funzione $continua$ in un punto x_0 .

(B) Dimostrare il seguente:

Teorema. Se una funzione $I \xrightarrow{f} \mathbb{R}$, $I \subset \mathbb{R}$ intervallo, è derivabile e f'(x) = 0 per ogni $x \in I$, allora f è costante su I.

Mostrare, mediante un controesempio, che se si elimina l'ipotesi che I sia un intervallo, l'enunciato è falso. (Scrivere la dimostrazione e il controesempio qui sotto, e sul retro del foglio.)

Seconda parte

Esercizio 1: 8 punti; Esercizio 2: 15 punti.

Esercizio 1

(B) Consideriamo la trasformazione $\mathbb{C} \xrightarrow{f} \mathbb{C}$ definita da: $f(z) = -iz + i, \ z \in \mathbb{C}$. (i) Trovare l'insieme dei punti fissi di f . (Dire esplicitamente che cos'è: \emptyset , un punto, una retta eccetera.	(A)	(A) Scrivere in forma esponenziale le soluzioni complesse dell'equazione			
(ii) Trovare l'insieme dei punti fissi di f . (Dire esplicitamente che cos'è: \emptyset , un punto, una retta eccetera. (ii) f è un'isometria? Se lo è, di quale tipo di isometria si tratta (rotazione, traslazione, riflessione, gli flessione)? (Motivare le risposte.) (iii) Scrivere f come composizione di al più tre riflessioni in rette: si chiede di scrivere esplicitament		$z^4 = e^{i\left(\frac{4}{3}\pi\right)}$			
 (i) Trovare l'insieme dei punti fissi di f. (Dire esplicitamente che cos'è: ∅, un punto, una retta eccetera. (ii) f è un'isometria? Se lo è, di quale tipo di isometria si tratta (rotazione, traslazione, riflessione, gli flessione)? (Motivare le risposte.) (iii) Scrivere f come composizione di al più tre riflessioni in rette: si chiede di scrivere esplicitament 					
 (i) Trovare l'insieme dei punti fissi di f. (Dire esplicitamente che cos'è: ∅, un punto, una retta eccetera. (ii) f è un'isometria? Se lo è, di quale tipo di isometria si tratta (rotazione, traslazione, riflessione, gli flessione)? (Motivare le risposte.) (iii) Scrivere f come composizione di al più tre riflessioni in rette: si chiede di scrivere esplicitament 					
 (ii) f è un'isometria? Se lo è, di quale tipo di isometria si tratta (rotazione, traslazione, riflessione, gli flessione)? (Motivare le risposte.) (iii) Scrivere f come composizione di al più tre riflessioni in rette: si chiede di scrivere esplicitament 	(B)	Consideriamo la trasformazione $\mathbb{C} \xrightarrow{f} \mathbb{C}$ definita da: $f(z) = -iz + i, \ z \in \mathbb{C}$.			
flessione)? (Motivare le risposte.) (iii) Scrivere f come composizione di al più tre riflessioni in rette: si chiede di scrivere esplicitament		(i) Trovare l'insieme dei punti fissi di f . (Dire esplicitamente che cos'è: \emptyset , un punto, una retta eccetera.)			
flessione)? (Motivare le risposte.) (iii) Scrivere f come composizione di al più tre riflessioni in rette: si chiede di scrivere esplicitament					
flessione)? (Motivare le risposte.) (iii) Scrivere f come composizione di al più tre riflessioni in rette: si chiede di scrivere esplicitament					
(iii) Scrivere f come composizione di al più tre riflessioni in rette: si chiede di scrivere esplicitament	flessi	(ii) f è un'isometria? Se lo è, di quale tipo di isometria si tratta (rotazione, traslazione, riflessione, glis ione)? (Motivare le risposte)			
		ione). (Mouvaire le risposite.)			
	mazi				

Esercizio 2

(A) Definiamo $(0,+\infty) \xrightarrow{f} \mathbb{R}$ ponendo

$$f(x) = -\frac{1}{2}\log^2(x) + \log(x)$$

(i) Scrivere le equazioni degli asintoti di f.

(ii) Calcolare la derivata prima di f.

Trovare i punti di massimo e di minimo locali di f.

(iii) Calcolare la derivata seconda di f.

Determinare gli intervalli in cui f è convessa o concava e (le ascisse degli) eventuali punti di flesso.

(iv) Tracciare un grafico qualitativo di f.

(B) Usando gli sviluppi di Taylor, calcolare il limite:

$$\lim_{x \to 0} \frac{e^{(x^2)} - \ln(1+x^2) - 1}{-1 + \sqrt{1 + 6x^4}}$$

Valore del limite:

Soluzioni

Esercizio 1.

(A) Le soluzioni di $z^4=e^{i\left(\frac{4}{3}\pi\right)}$ sono quattro. In forma sponenziale si scrivono $e^{i\phi_k},\,k=0,1,2,3,$ dove

$$\phi_k = \frac{\frac{4}{3}\pi + 2k\pi}{4} = \frac{\pi}{3} + k\frac{\pi}{2}, \qquad k = 0, 1, 2, 3.$$

Dunque le soluzioni sono:

$$e^{i\frac{\pi}{3}}, e^{i\frac{5\pi}{6}} e^{i\frac{4\pi}{3}} e^{i\frac{11\pi}{6}}$$

(B)

(i) L'insieme dei punti fissi è l'insieme delle soluzioni dell'equazione f(z) = z:

$$-iz + i = z$$

Questa equazione ha un'unica soluzione. Dunque c'è un unico punto fisso: $C = \frac{1}{2} + i\frac{1}{2}$.

(ii) La trasformazione f definita da f(z)=-iz+i è un'isometria. Più in generale, tutte le trasformazioni del tipo $\varphi(z)=uz+b$, con |u|=1, sono isometrie. Infatti, si ottengono come composizione della trasformazione $z\longmapsto uz$ (|u|=1), che è una rotazione, e della traslazione di $b\in\mathbb{C}$. Rotazioni e traslazioni sono isometrie; dunque φ è una isometria, in quanto composizione di isometrie.

Poiché abbiamo visto che f ha un unico punto fisso, possiamo concludere che l'isometria f è una rotazione. Precisamente, è la rotazione avente come centro il punto fisso $C = \frac{1}{2} + i\frac{1}{2}$, e come ampiezza $-\pi/2$ (rotazione di $\pi/2$ in senso orario), perché l'argomento del coefficiente unitario u = -i è $-\pi/2$.

(iii) Una rotazione f di centro C e ampiezza ϑ si ottiene come composizione di due riflessioni

$$f = R_{\ell_2} \circ R_{\ell_1}$$

(prima R_{ℓ_1} , dopo R_{ℓ_2}) dove ℓ_1, ℓ_2 è una qualunque coppia di rette incidenti in C, tali che l'angolo $da \ \ell_1 \ a \ \ell_2$ sia $\vartheta/2$. Nel nostro caso, $C = \frac{1}{2} + i\frac{1}{2} \ e \ \vartheta/2 = -\pi/4$. Dunque, basterà prendere, ad esempio, la retta ℓ_1 di equazione $y = \frac{1}{2}$ e la retta ℓ_2 di equazione x + y = 1.

Esercizio 2.

(A) Studio della funzione

$$f(x) = -\frac{1}{2}\log^2(x) + \log(x)$$

(i) La funzione f è continua su $(0, +\infty)$. Quindi, gli eventuali asintoti sono per $x \to +\infty$ e per $x \to 0^+$.

Per $x \to +\infty$:

$$\lim_{x \to +\infty} f(x) = -\infty, \quad \lim_{x \to +\infty} \frac{f(x)}{x} = 0.$$

Quindi non ci sono asintoti a $+\infty$.

Per $x \to 0^+$:

$$f(x) = \log^2(x) - 2\log(x) = \log(x)[\log x - 2] \sim \log^2(x) \to -\infty$$

Dunque la retta y = 0 è asintoto verticale di f da destra.

(ii) La derivata è

$$f'(x) = \frac{-\log(x) + 1}{x}$$

Pertanto,

$$\forall x \in (e, +\infty) \quad f'(x) < 0, \qquad f'(e) = 0, \qquad \forall x \in (0, e) \quad f'(x) > 0$$

f è strettamente decrescente in $(e, +\infty)$ e f è strettamente crescente in (0, e). Dunque x = e è un punto di massimo relativo (in cui f assume il valore f(e) = -1). Non ci sono punti di massimo locale.

(iii) La derivata seconda è

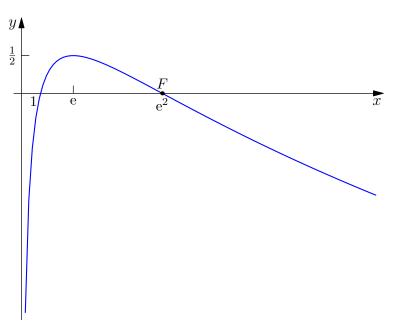
$$f''(x) = \frac{\log(x) - 2}{x^2} \qquad x \in (0, +\infty)$$

Pertanto

$$f''(x) < 0 \quad \forall x \in (0, e^2);$$
 $f''(e^2) = 0;$ $f''(x) > 0 \quad \forall x \in (e^2, +\infty)$

Dunque f è concava in $(0, e^2)$ ed è convessa in $(e^2, +\infty)$. Dunque, $x = e^2$ è un punto di flesso.

(iv) Grafico qualitativo di $f(x) = -\frac{1}{2}\log^2(x) + \log(x)$.



(B)

Utilizziamo gli sviluppi:

$$\sqrt{1+6x^4} = 1 + 3x^4 + o(x^4)$$

$$\ln(1+x^2) = x^2 - \frac{x^4}{2} + o(x^4)$$

$$e^{x^2} = 1 + x^2 + \frac{x^4}{2!} + o(x^4)$$

Allora, il numeratore è

$$e^{(x^2)} - \ln(1+x^2) - 1 = x^4 + o(x^4)$$

e il denominatore:

$$-1 + \sqrt{1 + 6x^4} = 3x^4 + o(x^4)$$

Dunque:

$$\lim_{x \to 0} \frac{e^{(x^2)} - \ln(1+x^2) - 1}{-1 + \sqrt{1 + 6x^4}} = \lim_{x \to 0} \frac{x^4 + o(x^4)}{3x^4 + o(x^4)} = \frac{1}{3}$$