Analisi e Geometria 1 Seconda Prova 31 gennaio 2017	Docente:	Politecnico di Milano Scuola di Ingegneria Industriale e dell'Informazione
Cognome:	Nome:	Matricola:
a. Si enunci e dimostri il teoren	na della media integrale per fun	zioni continue. (5 punti)
		lotto scalare, specificando qual è la
direzione normale ad esso. (3	3 punti)	

Docente:	Politecnico di Milano
	Scuola di Ingegneria
	Industriale e dell'Informazione
Nome:	Matricola:

Es. 3

Totale

Punteggi degli esercizi: Es.1: 7; Es.2: 7; Es.3: 10

Es. 2

Istruzioni: Tutte le risposte devono essere motivate. Gli esercizi vanno svolti su questi fogli, nello spazio sotto il testo e, in caso di necessità, sul retro. I fogli di brutta non devono essere consegnati.

Esercizio 1. (Versione C) Stabilire per quali valori del parametro $\alpha \in \mathbb{R}$, $\alpha > 0$, l'integrale improprio

$$I = \int_0^{+\infty} \frac{\sqrt{1+4x} - \sqrt{1+x}}{x^{2\alpha}\sqrt[3]{1+2x+x^2}} \, \mathrm{d}x$$

converge.

Es. 1

Soluzione. Poiché

$$\sqrt{1+4x} - \sqrt{1+x} = \frac{1+4x-1-x}{\sqrt{1+4x} + \sqrt{1+x}} = \frac{3x}{\sqrt{1+4x} + \sqrt{1+x}},$$

la funzione integranda

$$f(x) = \frac{\sqrt{1+4x} - \sqrt{1+x}}{x^{2\alpha}\sqrt[3]{1+2x+x^2}}$$

è definita, è continua ed è positiva su tutto l'intervallo $(0,+\infty)$. Si tratta quindi di studiare l'integrabilità di f in un intorno destro di 0 e in un intorno di $+\infty$.

Per $x \to 0^+$, si ha

$$f(x) \sim \frac{3x}{2x^{2\alpha}} = \frac{3}{2} \frac{1}{x^{2\alpha-1}}$$
.

La funzione $1/x^{2\alpha-1}$ è integrabile in senso improprio per $x\to 0^+$ quando $2\alpha-1<1$, ossia per $\alpha<1$. Pertanto, applicando il criterio del confronto asintotico, anche la funzione f è integrabile in senso improprio per $x\to 0^+$ per $\alpha<1$.

Per $x \to +\infty$, si ha

$$f(x) \sim \frac{3x}{3\sqrt{x} x^{2\alpha} \sqrt[3]{x^2}} = \frac{1}{x^{2\alpha+2/3-1/2}} = \frac{1}{x^{2\alpha+1/6}}$$
.

La funzione $1/x^{2\alpha+1/6}$ è integrabile in senso improprio in un intorno di $+\infty$ quando $2\alpha+\frac{1}{6}>1$, ossia per $\alpha>\frac{1}{2}(1-\frac{1}{6})=\frac{5}{12}$. Quindi, per il criterio del confronto asintotico, possiamo concludere che anche la funzione f è integrabile in senso improprio in un intorno di $+\infty$ per $\alpha>\frac{5}{12}$.

In conclusione, la funzione f è integrabile in senso improprio, e quindi l'integrale I è convergente, se e soltanto se

$$\frac{5}{12} < \alpha < 1.$$

Esercizio 1. (Versione D)

Stabilire per quali valori del parametro $\alpha \in \mathbb{R}$, $\alpha > 0$, l'integrale improprio

$$I = \int_0^{+\infty} \frac{\sqrt{1+4x} - \sqrt{1+x}}{x^{3\alpha}\sqrt[3]{1+3x+x^3}} \, \mathrm{d}x$$

converge.

Soluzione. Poiché

$$\sqrt{1+4x} - \sqrt{1+x} = \frac{1+4x-1-x}{\sqrt{1+4x} + \sqrt{1+x}} = \frac{3x}{\sqrt{1+4x} + \sqrt{1+x}},$$

la funzione integranda

$$f(x) = \frac{\sqrt{1+4x} - \sqrt{1+x}}{x^{3\alpha}\sqrt[3]{1+3x+x^3}}$$

è definita, è continua ed è positiva su tutto l'intervallo $(0, +\infty)$. Si tratta quindi di studiare l'integrabilità di f in un intorno destro di 0 e in un intorno di $+\infty$.

Per $x \to 0^+$, si ha

$$f(x) \sim \frac{3x}{2x^{3\alpha}} = \frac{3}{2} \frac{1}{x^{3\alpha-1}}$$
.

La funzione $1/x^{3\alpha-1}$ è integrabile in senso improprio per $x\to 0^+$ quando $3\alpha-1<1$, ossia per $\alpha<\frac{2}{3}$. Pertanto, applicando il criterio del confronto asintotico, anche la funzione f è integrabile in senso improprio per $x\to 0^+$ per $\alpha<\frac{2}{3}$.

Per $x \to +\infty$, si ha

$$f(x) \sim \frac{3x}{3\sqrt{x} \, x^{3\alpha} \sqrt[3]{x^3}} = \frac{1}{x^{3\alpha+1-1/2}} = \frac{1}{x^{3\alpha+1/2}} \, .$$

La funzione $1/x^{3\alpha+1/2}$ è integrabile in senso improprio in un intorno di $+\infty$ quando $3\alpha+\frac{1}{2}>1$, ossia per $\alpha>\frac{1}{3}(1-\frac{1}{2})=\frac{1}{6}$. Quindi, per il criterio del confronto asintotico, possiamo concludere che anche la funzione f è integrabile in senso improprio in un intorno di $+\infty$ per $\alpha>\frac{1}{6}$.

In conclusione, la funzione f è integrabile in senso improprio, e quindi l'integrale I è convergente, se e soltanto se

 $\frac{1}{6} < \alpha < \frac{2}{3}.$

Esercizio 2. (Versione C). Si consideri l'equazione differenziale

$$y' - 5y = \frac{1}{(1 + e^{-5t})^2} \tag{1}$$

- a. Trovare la soluzione generale. Dire se esiste una soluzione che sia limitata su tutto \mathbb{R} .
- **b.** Trovare la soluzione particolare $\overline{y}(t)$ che sodisfa la condizione $\overline{y}(0) = -\frac{1}{10}$. Stabilire se tale soluzione è limitata.

Soluzione.

a. Ricordiamo che la soluzione generale dell'equazione lineare del primo ordine

$$y' + a(t)y = f(t) \tag{2}$$

è data da

$$y = Ce^{-A(t)} + e^{-A(t)} \int f(t)e^{A(t)} dt$$
 (3)

dove A(t) è una qualunque primitiva di a(t), C è una costante arbitraria e $\int f(t)e^{A(t)} dt$ denota una qualunque antiderivata di $f(t)e^{A(t)}$.

Nel nostro caso, a(t)=-5. Come antiderivata di a(t), scegliamo A(t)=-5t. Allora la soluzione generale dell'equazione omogenea associata è $Ce^{-A(t)}=Ce^{5t}$, dove $C\in\mathbb{R}$ è una costante arbitraria. Abbiamo poi

$$\int f(t)e^{A(t)} dt = \int \frac{1}{(1 + e^{-5t})^2} e^{-5t} dt = \frac{1}{5} \frac{1}{1 + e^{-5t}}$$

Sappiamo dalla teoria che una soluzione particolare dell'equazione non omogenea (1) è data da

$$e^{-A(t)} \int f(t)e^{A(t)} = e^{5t} \frac{1}{5} \frac{1}{1 + e^{-5t}}$$

Quindi la soluzione generale (ossia, l'insieme di tutte le soluzioni) dell'equazione lineare (1) è data dalla famiglia di funzioni

$$y_C(t) = Ce^{5t} + \frac{e^{5t}}{5(1 + e^{-5t})}, \qquad C \in \mathbb{R}$$
 (4)

Le soluzioni (1) si possono anche scrivere:

$$y_C(t) = e^{5t} \left[C + \frac{1}{5(1 + e^{-5t})} \right] \qquad C \in \mathbb{R}$$
 (5)

Vediamo se esistono valori della costante C per i quali la soluzione y_C sia limitata su tutto \mathbb{R} , cioè abbia limiti finiti per $t \to +\infty$ e per $t \to -\infty$. Anzitutto, per $t \to -\infty$, si ha

$$\lim_{t \to -\infty} y_C(t) = \lim_{t \to -\infty} e^{5t} \left[C + \frac{1}{5(1 + e^{-5t})} \right] = 0$$
 (6)

qualunque sia $C \in \mathbb{R}$, perché, per $t \to -\infty$, il termine e^{5t} tende a zero, e il termine in parentesi quadra tende a C.

Per $t \to +\infty$, si ha

$$y_C(t) = e^{5t} \left[C + \frac{1}{5(1 + e^{-5t})} \right] \sim e^{5t} \left(C + \frac{1}{5} \right)$$
 (7)

se $C+\frac{1}{5}\neq 0$. Dunque, se $C+\frac{1}{5}\neq 0$, cioè $C\neq -\frac{1}{5}$, per $t\to +\infty$, $y_C(t)\sim e^{5t}\left(C+\frac{1}{5}\right)\to \pm\infty$, a seconda del segno di $C+\frac{1}{5}$, e quindi y_C non è limitata. Se invece $C=-\frac{1}{5}$, si ha ha, per $t\to +\infty$:

$$\begin{split} y_{-\frac{1}{5}}(t) &= e^{5t} \left[-\frac{1}{5} + \frac{1}{5(1 + e^{-5t})} \right] \\ &= \frac{1}{5} e^{5t} \left[\frac{-1 - e^{-5t} + 1}{1 + e^{-5t}} \right] \\ &= -\frac{1}{5} \frac{1}{1 + e^{-5t}} \to -\frac{1}{5} \end{split}$$

In conclusione, la soluzione particolare $y_{-\frac{1}{5}}(t)$ (che si ottiene per $C=-\frac{1}{5}$) è limitata su tutto \mathbb{R} , ed è l'unica soluzione limitata.

b. Partiamo dall'espressione della soluzione generale:

$$y(t) = Ce^{5t} + \frac{e^{5t}}{5(1 + e^{-5t})}, \qquad C \in \mathbb{R}$$
 (8)

Ponendo $y(0) = -\frac{1}{10}$, ricaviamo:

$$-\frac{1}{10} = C + \frac{1}{10}, \qquad C = -\frac{1}{5}$$

Quindi la soluzione particolare che soddisfa la condizione $y(0)=-\frac{1}{10}$ è

$$y(t) = -\frac{1}{5}e^{5t} + \frac{e^{5t}}{5(1 + e^{-5t})}$$

Il conto che abbiamo fatto per rispondere alla domanda precedente, ci dice che questa soluzione particolare è limitata.

Esercizio 2. (Versione D). Si consideri l'equazione differenziale

$$y' + 3y = \frac{1}{(1 + e^{3t})^2} \tag{9}$$

- a. Trovare la soluzione generale. Dire se esiste una soluzione che sia limitata su tutto \mathbb{R} .
- **b.** Trovare la soluzione particolare $\overline{y}(t)$ che sodisfa la condizione $\overline{y}(0) = -\frac{1}{10}$. Stabilire se tale soluzione è limitata.

Soluzione.

a. Ragionando come nell'esecizio precedente, si ottengono questi risultati.

La soluzione generale (ossia, l'insieme di tutte le soluzioni) dell'equazione lineare (9) è data dalla famiglia di funzioni

$$y_C(t) = Ce^{-3t} - \frac{e^{-3t}}{3(1+e^{3t})}, \qquad C \in \mathbb{R}$$
 (10)

La soluzione particolare $y_{\frac{1}{3}}(t)$ (che si ottiene per $C=\frac{1}{3}$) è limitata su tutto \mathbb{R} , ed è l'unica soluzione limitata.

b. La soluzione particolare che soddisfa la condizione $y(0) = -\frac{1}{10}$ è

$$y(t) = \frac{1}{15}e^{-3t} - \frac{e^{-3t}}{3(1+e^{3t})}$$

Questa soluzione particolare non è limitata, perché, quando $t \to -\infty$, y(t) tende a $-\infty$.

Esercizio 3. (Versione C)

a. Determinare il piano osculatore π_0 alla curva

$$\gamma: \begin{cases} x = e^t \\ y = 2 + t - e^t \\ z = 1 + te^t \end{cases} \quad t \in \mathbb{R}$$

nel punto P_0 corrispondente a t = 0.

b. Determinare il versore normale di γ nel punto P_0 .

c. Calcolare la curvatura e il raggio di curvatura di γ nel punto P_0 .

d. Determinare il centro di curvatura di γ nel punto P_0 .

Soluzione. Sia $f: \mathbb{R} \to \mathbb{R}^3$ la funzione vettoriale che rappresenta γ , ossia la funzione definita da

$$f(t) = (e^t, 2 + t - e^t, 1 + te^t)$$
.

Si ha $f'(t) = (e^t, 1 - e^t, e^t + te^t)$ e $f''(t) = (e^t, -e^t, 2e^t + te^t)$.

a. Per t=0, si ha $P_0=f(0)=(1,1,1)$, f'(0)=(1,0,1) e f''(0)=(1,-1,2). Pertanto, l'equazione del piano osculatore π_0 è $[X-P_0,f'(0),f''(0)]=0$, dove $X\equiv (x,y,z)$ ossia

$$\begin{vmatrix} x-1 & y-1 & x-1 \\ 1 & 0 & 1 \\ 1 & -1 & 2 \end{vmatrix} = 0$$

ossia

$$\pi_0 : x - y - z + 1 = 0.$$

b. Il versore tangente in P_0 è

$$\mathbf{t}(0) = \frac{f'(0)}{\|f'(0)\|} = \frac{(1,0,1)}{\sqrt{2}}.$$

Inoltre, essendo $f'(0) \wedge f''(0) = (1, -1, -1)$, il versore binormale in P_0 è

$$\mathbf{b}(0) = \frac{f'(0) \wedge f''(0)}{\|f'(0) \wedge f''(0)\|} = \frac{(1, -1, -1)}{\sqrt{3}}.$$

Infine, versore normale in P_0 è

$$\mathbf{n}(0) = \mathbf{b}(0) \wedge \mathbf{t}(0) = \frac{(-1, -2, 1)}{\sqrt{6}}.$$

c. La curvatura e il raggio di curvatura di γ nel punto P_0 sono

$$\kappa(0) = \frac{\|f'(0) \wedge f''(0)\|}{\|f'(0)\|^3} = \frac{\sqrt{3}}{2\sqrt{2}}$$

e

$$\rho(0) = \frac{1}{\kappa(0)} = \frac{2\sqrt{2}}{\sqrt{3}} \,.$$

d. Il centro di curvatura di γ nel punto P_0 è

$$C_0 = P_0 + \rho(0) \mathbf{n}(0) = (1, 1, 1) + \frac{2}{3} (-1, -2, 1) = \left(\frac{1}{3}, -\frac{1}{3}, \frac{5}{3}\right).$$

Esercizio 3. (Versione D)

a. Determinare il piano osculatore π_0 alla curva

$$\gamma: \begin{cases} x = -e^t \\ y = 2 + t - e^t \\ z = -1 + te^t \end{cases} \quad t \in \mathbb{R}$$

nel punto P_0 corrispondente a t = 0.

b. Determinare il versore normale di γ nel punto P_0 .

c. Calcolare la curvatura e il raggio di curvatura di γ nel punto P_0 .

d. Determinare il centro di curvatura di γ nel punto P_0 .

Soluzione. Sia $f: \mathbb{R} \to \mathbb{R}^3$ la funzione vettoriale che rappresenta γ , ossia la funzione definita da

$$f(t) = (-e^t, 2 + t - e^t, -1 + te^t).$$

Si ha $f'(t) = (-e^t, 1 - e^t, e^t + te^t)$ e $f''(t) = (-e^t, -e^t, 2e^t + te^t)$.

a. Per t = 0, si ha $P_0 = f(0) = (-1, 1, -1)$, f'(0) = (-1, 0, 1) e f''(0) = (-1, -1, 2). Pertanto, l'equazione del piano osculatore π_0 è $[X - P_0, f'(0), f''(0)] = 0$, dove $X \equiv (x, y, z)$ ossia

$$\begin{vmatrix} x+1 & y-1 & x+1 \\ -1 & 0 & 1 \\ -1 & -1 & 2 \end{vmatrix} = 0$$

ossia

$$\pi_0 : x + y + z + 1 = 0.$$

b. Il versore tangente in P_0 è

$$\mathbf{t}(0) = \frac{f'(0)}{\|f'(0)\|} = \frac{(-1,0,1)}{\sqrt{2}}.$$

Inoltre, essendo $f'(0) \wedge f''(0) = (1, 1, 1)$, il versore binormale in P_0 è

$$\mathbf{b}(0) = \frac{f'(0) \wedge f''(0)}{\|f'(0) \wedge f''(0)\|} = \frac{(1,1,1)}{\sqrt{3}}.$$

Infine, versore normale in P_0 è

$$\mathbf{n}(0) = \mathbf{b}(0) \wedge \mathbf{t}(0) = \frac{(1, -2, 1)}{\sqrt{6}}.$$

c. La curvatura e il raggio di curvatura di γ nel punto P_0 sono

$$\kappa(0) = \frac{\|f'(0) \wedge f''(0)\|}{\|f'(0)\|^3} = \frac{\sqrt{3}}{2\sqrt{2}}$$

e

$$\rho(0) = \frac{1}{\kappa(0)} = \frac{2\sqrt{2}}{\sqrt{3}} \,.$$

d. Il centro di curvatura di γ nel punto P_0 è

$$C_0 = P_0 + \rho(0) \mathbf{n}(0) = (-1, 1, -1) + \frac{2}{3} (1, -2, 1) = \left(-\frac{1}{3}, -\frac{1}{3}, -\frac{1}{3}\right).$$