Derivate

- Funzioni derivabili.
- Derivabilità equivale a differenziabilità.
- Interpretazione geometrica del differenziale.
- Regole di derivazione.

(Versione: 07/10/2020)

Funzione derivabile. La derivata.

Dati:

$$I\stackrel{f}{\longrightarrow} \mathbb{R}$$
 funzione; $I\subset \mathbb{R}$ intervallo aperto ; $x_0\in I.$

Definizione (Derivata come limite del rapporto incrementale)

Se esiste finito (cioè, non $+\infty$ o $-\infty$) il limite del rapporto incrementale

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \qquad \left(\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}\right)$$

f si dice derivabile in x_0 e tale limite si chama la derivata di f nel punto x_0 .

Alcune notazioni per la derivata

$$f'(x_0)$$
 $\frac{df}{dx}(x_0)$ (Leibniz) $Df(x_0)$ $\dot{f}(x_0)$ (Newton)

Differenziabilità. Approssimazione lineare (al primo ordine).

Definizione (Funzione lineare)

Una funzione $\mathbb{R} \stackrel{T}{\longrightarrow} \mathbb{R}$ si dice lineare se esiste $L \in \mathbb{R}$ tale che $\forall h \in \mathbb{R}$ $T(h) = L \cdot h$

(Una funzione il cui grafico è una retta passante per l'origine.)

Teorema (Proprietà di differenziabilità)

- (1) Se f è derivabile in x_0 , l'incremento $\Delta f = f(x_0 + h) f(x_0)$ corrispondente all'incremento h di x₀ si scrive come somma $f(x_0 + h) - f(x_0) = f'(x_0) \cdot h + o(h)$ per $h \to 0$ La funzione lineare $\mathbb{R} \xrightarrow{dt_{x_0}} \mathbb{R} \quad h \longmapsto f'(x_0) \ h \ si \ chiama \ il$ differenziale di f in x_0 , o l'approssimazione lineare di f in x_0
- (2) Viceversa: Supponiamo che esista una funzione lineare $h \rightarrow L \cdot h$ tale che $f(x_0 + h) = f(x_0) + L \cdot h + o(h)$ per $h \to 0$. Allora f è derivabile in x_0 e $L = f'(x_0)$.

Dimostrazione

(1) Supponiamo f derivabile in x_0 . Allora:

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - f'(x_0) h}{h} = \lim_{h \to 0} \left[\frac{f(x_0 + h) - f(x_0)}{h} - f'(x_0) \right] = f'(x_0) - f'(x_0)$$

$$= 0$$

Dunque, $f(x_0 + h) - f(x_0) = f'(x_0) \cdot h + o(h)$ (per $h \to 0$).

(2) Supponiamo che esista una funzione lineare $h \to L \cdot h$ tale che $f(x_0 + h) = f(x_0) + L \cdot h + o(h)$, per $h \to 0$. Allora:

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \left[L + \frac{o(h)}{h} \right]$$
$$= L + \lim_{h \to 0} \frac{o(h)}{h}$$
$$= L$$

Funzione differenziabile. Linearizzazione.

Definizione (Funzione differenziabile)

 $I \subset \mathbb{R}$ intervallo aperto, $x_0 \in I$. Una funzione $I \xrightarrow{f} \mathbb{R}$ si dice differenziabile nel punto x_0 se esiste una funzione lineare $\mathbb{R} \longrightarrow \mathbb{R}$, $h \to L \cdot h$ per la quale si abbia

$$f(x_0 + h) = f(x_0) + L \cdot h + o(h)$$
 per $h \to 0$ (1)

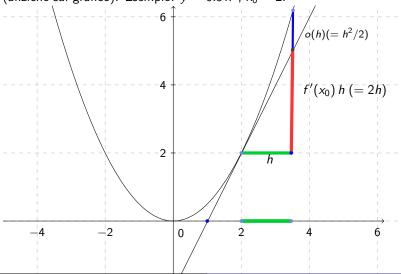
o, in modo equivalente:

$$f(x) = f(x_0) + L \cdot (x - x_0) + o(x - x_0)$$
 per $x \to x_0$ (2)

In questo caso, f è derivabile e $L = f'(x_0)$.

- (a) Per il teorema precedente: una funzione è derivabile se, e solo se, è differenziabile.
- (b) $y = f(x_0) + f'(x_0)(x x_0)$ è la retta tangente al grafico di f in $(x_0, f(x_0))$.

Interpretazione geometrica del differenziale La quantità $f'(x_0) \cdot h$ (= $df_{x_0}(h)$, valore del differenziale in h) è la variazione dell'ordinata (corrispondente all'incremento h dell'ascissa) letta sulla retta tangente (anziché sul grafico). Esempio: $y = 0.5 x^2$, $x_0 = 2$.



6/12

Derivate

Federico Lastaria. Analisi e Geometria 1.

Applicazione: il calcolo approssimato

Esempio Consideriamo la funzione $f(x) = 3x^3 + x^2$. Vogliamo calcolare il valore approssimato f(x) in un punto x molto vicino a $x_0 = 1$, diciamo x = 1 + h, con h piccolo. Abbiamo: $f(1+h) = 3(1+h)^3 + (1+h)^2 = 4 + 11h + 10h^2 + 3h^3$ Se h è molto piccolo, il termine $10h^2 + 3h^3$ (che è o(h) per $h \to 0$) si può trascurare (approssimazione lineare, o al primo ordine): $f(1+h) \approx 4 + 11h$ (per h piccolo) In termini rigorosi: f(1+h)-f(1)=11h+o(h), per $h\to 0$. Leggiamo allora che: f'(1) = 11 è la derivata di f in $x_0 = 1$; il differenziale di f in $x_0 = 1$ è l'applicazione lineare: $h \to 11h$.

Teorema (Derivabilità implica continuità)

Se f è derivabile in x_0 , allora è continua in x_0 .

1^a DIMOSTRAZIONE. Da
$$f(x) - f(x_0) = \frac{f(x) - f(x_0)}{x - x_0}(x - x_0)$$
 segue: $\lim_{x \to x_0} [f(x) - f(x_0)] = \lim_{x \to x_0} \left[\frac{f(x) - f(x_0)}{x - x_0}(x - x_0) \right] = f'(x_0) \cdot 0 = 0$ Dunque, $\lim_{x \to x_0} f(x) = f(x_0)$.

2^a DIMOSTRAZIONE. Per ipotesi, $f(x) = f(x_0) + f'(x_0) + f$

$$f(x) = f(x_0) + f'(x_0) \cdot (x - x_0) + o(x - x_0)$$
 $x \to x_0$

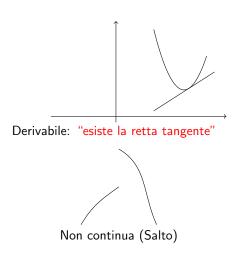
o, in modo equivalente:

$$f(x) = f(x_0) + f'(x_0) \cdot (x - x_0) + (x - x_0)\alpha(x)$$
 $\alpha(x) \to 0 \ x \to x_0$

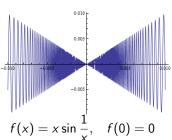
Allora, per $x \to x_0$:

$$f(x) = f(x_0) + \underbrace{f'(x_0)(x - x_0)}_{\to 0} + \underbrace{(x - x_0)\alpha(x)}_{\to 0} \to f(x_0)$$

Funzioni derivabili e non derivabili



$$f'_{-}(x_0) \neq f'_{+}(x_0)$$
Continua non derivabile



Continua non derivabile

Formule di derivazione (1)

Teorema (Somma, prodotto, quoziente)

Se f, g sono derivabili in x, allora:

 $\mathbf{1}$ f + g è derivabile in x, e

$$(f+g)'(x) = f'(x) + g'(x)$$

2 $f \cdot g$ è derivabile in x, e vale la Regola di Leibniz:

$$(f \cdot g)'(x) = f'(x)g(x) + f(x)g'(x)$$

3 (Derivata del quoziente) Se $g(x) \neq 0$, allora il rapporto f/g è derivabile in x e si ha:

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{\left[g(x)\right]^2}$$

Derivata della funzione composta e della funzione inversa

Teorema (Derivata della funzione composta. "Chain Rule")

Se è definita la funzione composta $g \circ f$, f è derivabile in x_0 e g è derivabile in $y_0 = f(x_0)$, allora $g \circ f$ è derivabile in x_0 e si ha

$$(g \circ f)'(x_0) = g'(y_0) \cdot f'(x_0)$$

Teorema (Derivata della funzione inversa)

Sia f una funzione reale definita su un intervallo I e invertibile. Supponiamo f derivabile in un punto $x_0 \in I$ e $f'(x_0) \neq 0$. Allora la funzione inversa f^{-1} è derivabile nel punto $y_0 = f(x_0)$ e si ha

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)} \tag{3}$$

Alcune derivate importanti (Da dimostrare)

$$D \ln x = \frac{1}{x}$$

$$Dx^{\alpha} = \alpha x^{\alpha-1}$$

$$D\sin x = \cos x$$

$$D\cos x = -\sin x$$

$$D \tan x = \frac{1}{\cos^2 x}$$

$$D \arctan x = \frac{1}{1 + x^2}$$

8
$$D \sinh x = \cosh x$$

$$D \cosh x = \sinh x$$