Regole di derivazione

- Derivata della somma e del prodotto.
- Derivata della funzione composta e della funzione inversa.
- Alcune derivate importanti.

(Versione: 11/10/2022)

Teorema (Derivata della somma)

Se f, g sono derivabili in x, allora f + g è derivabile in x, e (f + g)'(x) = f'(x) + g'(x)

DIMOSTRAZIONE.

Il rapporto incrementale, a partire dal punto fissato x, di f + g è:

$$\frac{(f+g)(x+h)-(f+g)(x)}{h} = \frac{f(x+h)-f(x)}{h} + \frac{g(x+h)-g(x)}{h}$$

Per $h \to 0$, il secondo membro tende a f'(x) + g'(x).

Teorema (Derivata del prodotto. Regola di Leibniz.)

Se f e g sono derivabili, allora il prodotto $f \cdot g$ è derivabile, e vale la Regola di Leibniz:

$$(f \cdot g)'(x) = f'(x)g(x) + f(x)g'(x)$$

Esempio:
$$f(x) = x^2$$
 e $g(x) = e^x$ sono derivabili; $(f \cdot g)(x) = f(x)g(x) = x^2e^x$ è derivabile e $(f(x)g(x))' = f'(x)g(x) + f(x)g'(x) = 2xe^x + x^2e^x$

DIMOSTRAZIONE (della Regola di Leibniz).

Strategia: cerchiamo di scrivere l'incremento

$$f(a+h)g(a+h)-f(a)g(a)$$

(a fisso, h incremento variabile) della funzione $f \cdot g$ come:

parte lineare Ah + o-piccolo (per $h \rightarrow 0$).

Allora A sarà la derivata.

$$f(a+h)g(a+h) - f(a)g(a) =$$

$$= [f(a) + f'(a)h + o(h)][g(a) + g'(a)h + o(h)] - f(a)g(a)$$

$$= [f'(a)g(a) + f(a)g'(a)]h + R(h), \text{ con } R(h) = o(h), h \to 0$$

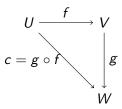
$$R(h) = \underbrace{(f(a) + g(a))o(h) + f'(a)g'(a)h^2 + f'(a)o(h^2) + g'(a)o(h^2) + o(h^2)}_{}$$

Tutto questo termine è un o(h), per $h \to 0$

La parte lineare $h \to [f'(a)g(a) + f(a)g'(a)]h$ è il differenziale di $f \cdot g$ in a; il coefficiente [f'(a)g(a) + f(a)g'(a)] è la derivata in a.

Funzione composta

Se $\operatorname{codom}(f) = \operatorname{dom}(g)$ è definita la funzione composta $g \circ f$.



Definizione

Definizione della funzione composta $c = g \circ f$: per ogni $x \in dom(c) (= dom(f)),$

$$c(x) = (g \circ f)(x) = g(f(x))$$

Esempio. $y = f(x) = x^2$; $z = g(y) = \sin y$; $c = (g \circ f)(x) = g(f(x)) = \sin(x^2).$

Derivata della funzione composta

Teorema (Derivata della funzione composta. "Chain Rule")

Se è definita la funzione composta $c = g \circ f$, f è derivabile in a e g è derivabile in b = f(a), allora $g \circ f$ è derivabile in a e si ha

$$g \circ f'(a) = g'(f(a))f'(a)$$

Ovvero, posto y = f(x) e z = g(y) = g(f(x)) = c(x),

$$\frac{dz}{dx} = \frac{dz}{dy}\frac{dy}{dx}$$

(Notazione di Leibniz.)

Esempio.
$$y = x^2$$
, $z = \sin y = \sin(x^2)$. Allora
$$\frac{dz}{dx} = \frac{dz}{dy}\frac{dy}{dx} = (\cos(y)) \ 2x = (\cos(x^2)) \ 2x$$

DIMOSTRAZIONE. Per $h \to 0$,

$$f(a + h) = f(a) + \underbrace{f'(a)h + o(h)}_{t} = f(a) + k$$

(Si noti che $k \to 0$ quando $h \to 0$.) Quindi:

$$(g \circ f)(a + h) = g(f(a + h)) = g(f(a) + k)$$

$$= g(f(a)) + g'(f(a))k + o(k)$$

$$= g(f(a)) + g'(f(a))[f'(a)h + o(h)] + o(k)$$

$$= g(f(a)) + g'(f(a))f'(a)h + \underbrace{g'(f(a))o(h)}_{o(h)} + o(k)$$

Dico che o(k) (dove k = f'(a)h + o(h)) è un o(h). Infatti, per

$$h \to 0:$$

$$\frac{o(k)}{h} = \frac{o(k)}{k} \underbrace{\frac{[f'(a)h + o(h)]}{h}} = \underbrace{\frac{o(k)}{k}} \underbrace{f'(a) + \frac{o(h)}{h}} \to 0$$

Da $(g \circ f)(a+h) = (g \circ f)(a) + g'(f(a))f'(a)h + o(h)$ (per $h \to 0$) segue la tesi: $(g \circ f)'(a) = g'(f(a))f'(a)$.

Derivata della funzione inversa

Teorema (Derivata della funzione inversa)

Sia I \xrightarrow{f} J invertibile, J \xrightarrow{g} I l'inversa (I, J intervalli di \mathbb{R}). Se f è derivabile in $a \in I$ e $f'(a) \neq 0$, allora g è derivabile in b = f(a) e si ha

$$(g)'(b) = \frac{1}{f'(a)} \tag{1}$$

$$(f(a) = b, a = g(b).)$$

Esempio. $f(x) = e^x = y$, $x = g(y) = \log_e y$. Allora,

$$g'(y) = \frac{1}{f'(x)} = \frac{1}{e^x} = \frac{1}{y}$$

DIMOSTRAZIONE. (Derivata della funzione inversa). Poniamo f(x) = y, x = g(y); f(a) = b, a = g(b).

$$\frac{g(y) - g(b)}{y - b} = \frac{x - a}{f(x) - f(a)} = \frac{1}{(f(x) - f(a))/(x - a)}$$

Ora si ricordi che se una funzione f è invertibile su un intervallo ed è continua, anche la sua inversa g è continua. Quindi, se $y \to b$, $x = g(y) \to g(b) = a$. Quindi, per $y \to b$, il primo membro tende a g'(b), e il secondo membro tende a $\frac{1}{f'(a)}$. Dunque,

$$(g)'(b) = \frac{1}{f'(a)}$$

Alcune derivate importanti (con cenni di calcolo).

- **1** Se f = c, $c \in \mathbb{R}$, è una funzione costante, Dc = 0.

$$De^{x} = \lim_{h \to 0} \frac{e^{x+h} - e^{x}}{h} = \lim_{h \to 0} e^{x} \frac{e^{h} - 1}{h} = e^{x}$$

Posto $\log_e x = y$, $x = \exp_e(y)$, per il teorema sulla derivata della funzione inversa:

$$D\log_e x = \frac{1}{\exp'_e(y)} = \frac{1}{\exp_e(y)} = \frac{1}{x}$$

$$D\frac{1}{x} = -\frac{1}{x^2}$$

$$\frac{1}{h} \left[\frac{1}{x+h} - \frac{1}{x} \right] = \frac{1}{h} \frac{-h}{(x+h)x} \xrightarrow{h \to 0} -\frac{1}{x^2}$$

$$D\frac{1}{g(x)} = -\frac{g'(x)}{g(x)^2}$$

(Derivata di una funzione composta: $x \mapsto f(x) \mapsto \frac{1}{g(x)}$)

$$D\frac{f(x)}{g(x)} = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$$

 $D\frac{f(x)}{g(x)} = D\left[f(x)\frac{1}{g(x)}\right]$. Ora si usi le regola di Leibniz e la regola per $D\frac{1}{g(x)}$.

8
$$Dx^{\alpha} = \alpha x^{\alpha-1}$$
 $(\alpha \in \mathbb{R}; x^{\alpha} = e^{\alpha \log(x)}; x > 0)$

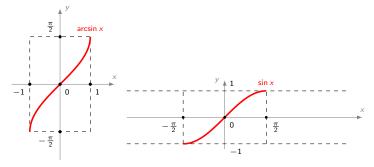
Per la regola di derivata di una funzione composta, $Dx^{\alpha} = D \exp(\log x^{\alpha}) = D \exp(\alpha \log x) = x^{\alpha} \frac{\alpha}{x} = \alpha x^{\alpha-1}$

$$\boxed{D\sqrt{x} = \frac{1}{2\sqrt{x}} \quad (x > 0)}$$

 $\boxed{\mathbf{0} \operatorname{sin} x = \cos x} \quad (x : \operatorname{misura in radianti})$

$$\frac{\sin(x+h) - \sin x}{h} = \frac{1}{h} \cdot \left[\sin x \cos h + \cos x \sin h - \sin x \right]$$
$$= \sin x \underbrace{\frac{\cos h - 1}{h}}_{\Rightarrow 0} + \cos x \underbrace{\frac{\sin h}{h}}_{\Rightarrow 1} \to \cos x$$

Derivata della funzione inversa (arcsin $x=y, x=\sin y$): $D \arcsin x = \frac{1}{D \sin(y)} = \frac{1}{\cos y} = \frac{1}{\sqrt{1-\sin^2 y}} = \frac{1}{\sqrt{1-x^2}}$



Usare la regola della derivata del quoziente: $D \tan x = D \frac{\sin(x)}{\cos(x)}$

$$D \arctan x = \frac{1}{1+x^2}$$

Derivata della funzione inversa (arctan $x=y, x=\tan y$): $D\arctan x=\frac{1}{D\tan(y)}=\frac{1}{1+\tan^2 y}=\frac{1}{1+x^2}$

Seno e coseno iperbolico

If
$$\sinh x = \frac{e^x - e^{-x}}{2}$$
 $(x \in \mathbb{R})$ $D \sinh x = \cosh x$

If $\cosh x = \frac{e^x + e^{-x}}{2}$ $(x \in \mathbb{R})$ $D \cosh x = \sinh x$

 $\sinh x$

Federico Lastaria. Analisi e Geometria 1.

https://en.wikipedia.org/wiki/Catenary

Derivate

15/15