A.A. 2021-22 Analisi e Geometria 1 Seconda prova parziale – Esercitazione 1

- 1. (1 affermazione corretta, 1 punto) L'integrale generalizzato $\int_1^{+\infty} \frac{x^a}{e^{2x}} dx$
 - (a) converge soltanto per a < 0.
 - (b) converge per ogni $a \in \mathbb{R}$.
 - (c) converge soltanto per a > 0.
 - (d) converge soltanto per a > 1.
 - (e) Le altre affermazioni sono false.
- 2. (1 affermazione corretta, 1 punto) In \mathbb{R}^3 , il piano passante per $P_0 = (1, 2, 0)$ e perpendicolare alla retta passante per A = (1, 0, 2) e B = (0, -1, 3) ha equazione cartesiana:
 - (a) x + y z + 2 = 0
 - (b) x + 2y 5 = 0
 - (c) Le altre risposte sono tutte sbagliate.
 - (d) x + y z 3 = 0
 - (e) x + y z = 0
- 3. (2 affermazioni corrette, 2 punti) Sia $\mathbb{R} \xrightarrow{C} \mathbb{R}^3$, $C(t) = (t, t^2, t^3)$.
 - (a) C'(1) e C''(1) sono ortogonali.
 - (b) $C'(1) \in C''(1)$ sono paralleli.
 - (c) C'(1) e C''(1) non sono paralleli.
 - (d) Un vettore di giacitura del piano osculatore in t=1 è C''(1)-C'(1).
 - (e) Un vettore di giacitura del piano osculatore in t=1 è $C'(1)\times C''(1)$.
- 4. (2 affermazioni corrette; 2 punti) Sia $[a,b] \stackrel{f}{\longrightarrow} \mathbb{R}$ una qualunque funzione.
 - (a) Se f è integrabile e $\int_a^b f(x) dx = 0$, allora $\int_a^b f^2(x) dx = 0$
 - (b) Se f è integrabile, allora f è continua.
 - (c) Se f è strettamente monotòna, allora f è integrabile.
 - (d) Se f è integrabile, allora f è strettamente monotòna.
 - (e) Se f è continua, allora f è integrabile

- 5. (2 affermazioni corrette, 2 punti) Poniamo $f(x)=\frac{x+\sqrt{x}}{x^3}$, definita su $I=(0,+\infty)$.
 - (a) f è integrabile in senso generalizzato su $[1, +\infty]$.
 - (b) f non è integrabile in senso generalizzato su $[1, +\infty]$.
 - (c) f è integrabile in senso generalizzato su [0,1].
 - (d) f non è integrabile in senso generalizzato su [0,1].
 - (e) L'integrale generalizzato $\int_0^{+\infty} f$ esiste.
- 6. (2 affermazioni corrette, 2 punti) La serie numerica $\sum_{n=1}^{+\infty} (-1)^n \frac{1}{n^3+n}$
 - (a) è assolutamente converge.
 - (b) converge, ma non è assolutamente cconvergente.
 - (c) converge. O
 - (e) non è convergente e non è assolutamente cconvergente.

(Carta e Penna.) Seconda prova parziale. Esercitazione 1

(a) (9 punti) Si consideri la seguente funzione:

$$f(x) = \arctan \frac{2}{x^2 - 1}$$

definita su $\mathbb{R} \setminus \{-1, 1\}$.

- a) Calcolare la derivata di f.
- b) Determinare eventuali simmetrie del grafico di f.
- c) Stabilire se esistano punti di massimo o di minimo locale.
- d) Disegnare un grafico qualitativo di f.
- e) Stabilire se f è integrabile a $+\infty$.

(b) (3 punti) Enunciare e dimostrare il Teorema di Pitagora facendo uso del calcolo vettoriale.