- **1** Definiamo: $f(x) = \log_e \left(\arctan \frac{1}{x}\right)$, $x \in (0, +\infty)$.
 - (a) Esiste un'estensione continua di f a $[0, +\infty)$?
 - (b) Determinare eventuali asintoti.
 - (c) Calcolare la derivata e trovare gli intervalli in cui f è crescente o decrescente.
 - (d) Tracciare un grafico qualitativo di f.
- (e) Trovare la soluzione y^* del problema di Cauchy $y' = 2x^2y^2$, y(0) = 3.
 - (f) Determinare l'intervallo massimale J sul quale è definita la soluzione y^* .
 - (g) La soluzione y^* è integrabile in senso generalizzato su J?
- (h) Determinare, e disegnare sul piano di Gauss, l'insieme $S = \{z \in \mathbb{C} \mid |z-i|^2 = 9|z-4i|^2\}.$

Soluzioni

1(a) $\lim_{x\to 0^+} f(x) = \log_e(\pi/2)$. Quindi la funzione

$$\tilde{f}(x) = \begin{cases} f(x) & x \neq 0 \\ \log_e(\pi/2) & x = 0 \end{cases}$$

è (l'unica) estensione continua di f a $[0, +\infty)$.

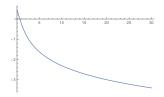
1(b) Per $x \to +\infty$, $f(x) \to -\infty$, e quindi f non ha asintoto orizzontale. Inoltre, per $x \to +\infty$, $\arctan 1/x \sim 1/x$ e quindi $f(x) \sim \log_e(1/x) = -\log_e(x)$. Allora

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{-\log_e(x)}{x} = 0$$

Quindi f non ha neanche asintoto obliquo a $+\infty$. (Abbiamo usato questo fatto: se, per $x \to x_0$, $a(x), b(x) \to 0$ e $a(x) \sim b(x)$, allora $\log a(x) \sim \log b(x)$. Infatti, $\log b/\log a = 1 + \frac{\log(b/a)}{\log a} \to 1$, perché $\log(b/a) \to 0$ e $\log a \to -\infty$)

1(c) $f'(x) = -\frac{1}{(1+x^2)\arctan(1/x)} < 0$ per ogni $x \in (0,+\infty)$. Quindi f è strettamente decrescente su $x \in (0,+\infty)$ e non ci sono punti di massimo o di minimo locali.

1(d)



2 (e), (f) La soluzione del problema di Cauchy è $y=\frac{3}{1-2x^3}$. Siccome il denominatore si annulla in $x_0=1/\sqrt[3]{2}$, il piú grande intervallo contentente 0 sul quale è definita la soluzione y^* è $J=(-\infty,1/\sqrt[3]{2})$.

2 (g) Studiamo dapprima l'integrabilità di y^* in un intorno sinistro di $1/\sqrt[3]{2} = x_0$. Poniamo $g(x) = 1 - 2x^3$. Per $x \to x_0$ vale:

$$g(x) \sim g(x_0) + g'(x_0)(x - x_0) = 0 - 6x_0^2(x - x_0)$$
. Quindi, per $x \to x_0^-$

$$g(x) \sim g(x_0) + g'(x_0)(x - x_0) = 0 - 6x_0^2(x - x_0)$$
. Quindi, per $x \to x_0^-$, $y^*(x) \sim \frac{3}{-6x_0^2(x - x_0)}$. Per il criterio del confronto asintotico, y^* non è

integrabile in un intorno sinistro di x_0 . Quindi, y^* non è integrabile in senso generalizzato su $J = (-\infty, 1/\sqrt[3]{2})$.

3 (h)
$$|z-i|^2 = x^2 + (y-1)^2$$
; $|z-4i|^2 = x^2 + (y-4)^2$. $|z-i|^2 = 9|z-4i|^2$ equivale a $x^2 + (y-1)^2 = 9(x^2 + (y-4)^2)$, ossia $x^2 + y^2 - \frac{35}{4}y + \frac{143}{8} = 0$. Dunque S è una circonferenza (di centro $C = \left(0, \frac{35}{8}\right)$ e raggio $r \approx 2.53$).

NOTA Fissati due punti A, B e un numero positivo $k(\neq 1)$, il luogo dei punti z del piano tali che

$$distanza(z, A) = k distanza(z, B)$$

è una circonferenza, detta "circonferenza (o cerchio) di Apollonio". Se k=1, il luogo è ovviamente una retta, l'asse del segmento AB.