Politecnico di Milano Corso di Analisi e Geometria 1 (a.a. 2022/23)

Federico Lastaria federico.lastaria@polimi.it

Dimostrazioni per la seconda prova parziale 20 Dicembre 2022

Indice

1	Din	nostrazioni per la seconda prova parziale	2
	1.1	Teorema della Media Integrale	2
	1.2	Continuità della funzione integrale	3
	1.3	Teorema Fondamentale del Calcolo Integrale. (Derivata	
		della funzione integrale e Formula di Newton–Leibniz)	4
	1.4	Integrabilità di $1/x^a$ in un intorno di $+\infty$	7
	1.5	Criterio del confronto asintotico per le serie	7
	1.6	Criterio della radice (di Cauchy) per le serie	6
	1.7	Teorema di Pitagora (e teorema di Carnot)	10
	1.8	Derivata di un vettore di lunghezza costante	12
	1.9	Proiezione di un vettore lungo un altro	13
	1.10	Equivalenza di due definizioni di curvatura	14

1 Dimostrazioni per la seconda prova parziale

1.1 Teorema della Media Integrale

Denotiamo $\mathcal{R}[a,b]$ lo spazio delle funzioni Riemann-integrabili su [a,b].

Teorema 1.1 (Teorema della Media Integrale). Sia $f \in \mathcal{R}[a,b]$. Siano

$$m = \inf f$$
 $M = \sup f$ (1.1)

l'estremo inferiore e l'estremo superiore di f su [a, b]. Allora

$$m \le \frac{1}{b-a} \int_a^b f(x) \, dx \le M \tag{1.2}$$

Inoltre, se f è continua, esiste un punto c in [a,b] per il quale vale l'uguaglianza:

$$\frac{1}{b-a} \int_{a}^{b} f(x) \, dx = f(c) \tag{1.3}$$

Dimostrazione. Da $m \leq f(x) \leq M$ (per ogni $x \in [a,b]$) segue, per la proprietà di monotonia dell'integrale,

$$\int_{a}^{b} m \, dx \le \int_{a}^{b} f(x) \, dx \le \int_{a}^{b} M \, dx \tag{1.4}$$

ossia

$$m(b-a) \le \int_a^b f(x) \, dx \le M(b-a) \tag{1.5}$$

(in quanto $\int_a^b m \, dx = m(b-a)$ e $\int_a^b M \, dx = M(b-a)$). Di qui segue subito la tesi (1.2).

Per dimostrare (1.3), supponiamo f continua su [a,b]. Per le disuguaglianze (1.2), il numero

$$\frac{1}{b-a} \int_a^b f(x) \, dx \tag{1.6}$$

è compreso tra l'estremo inferiore m e l'estremo superiore M di f in [a,b]. Poiché f è continua sull'intervallo [a,b], assume tutti i valori compresi tra il suo estremo inferiore e il suo estremo superiore (Teorema dei Valori Intermedi). Quindi esiste un punto $c \in [a,b]$ per il quale vale (1.3). Q.E.D.

1.2 Continuità della funzione integrale

Denotiamo $\mathcal{R}[a,b]$ lo spazio delle funzioni Riemann-integrabili su [a,b]. Sappiamo che esistono funzioni che non sono continue su [a,b], ma sono comunque Riemann-integrabili su [a,b]. Vale però il seguente risultato: se f è una qualunque funzione Riemann-integrabili su [a,b] (anche non continua), la sua funzione integrale $F(x) = \int_a^x f(t) dt$ è continua.

Teorema 1.2 (Continuità della funzione integrale). Sia $f \in \mathcal{R}[a,b]$. Allora la funzione integrale

$$F(x) = \int_{a}^{x} f(t) dt \tag{1.7}$$

è continua su [a, b].

Più precisamente, la dimostrazione di questo teorema assicura che F soddisfa una condizione di Lipschitz: esiste $K \in \mathbb{R}$ tale che

$$|F(z) - F(w)| \le K|z - w| \tag{1.8}$$

per ogni $w, z \in [a, b]$.

Dimostrazione. Per ipotesi f, essendo integrabile, è limitata: esiste una costante K > 0 per cui $|f(x)| \le K$ per ogni $x \in [a, b]$.

Sia $x_0 \in [a, b]$ arbitrario. Allora, per ogni $x \in [a, b]$:

$$|F(x) - F(x_0)| = \left| \int_a^x f - \int_a^{x_0} f \right|$$

$$= \left| \int_{x_0}^x f \right|$$

$$\leq \left| \int_{x_0}^x |f| \right| \qquad \text{perché } \int_a^b f \leq \int_a^b |f| \quad (a < b)$$

$$\leq \left| \int_{x_0}^x K \right| \qquad \text{perché } |f| \leq K$$

$$= K|x - x_0|$$

Quindi, per ogni $\varepsilon > 0$, se $|x - x_0| < \delta = \varepsilon/K$, si ha $|F(x) - F(x_0)| < \varepsilon$. Dunque F è continua in x_0 . Q.E.D.

Osservazione 1 Il Teorema Fondamentale del Calcolo Integrale (che vedremo più avanti), dice che se f è continua, allora la sua funzione integrale F è addirittura derivabile e F' = f.

1.3 Teorema Fondamentale del Calcolo Integrale. (Derivata della funzione integrale e Formula di Newton-Leibniz)

Teorema 1.3 (Teorema Fondamentale del Calcolo Integrale. Caso f continua.). Sia $[a,b] \xrightarrow{f} \mathbb{R}$ una funzione continua. Allora valgono i due fatti seguenti.

1 (Derivata della funzione integrale)

Poniamo

$$F(x) = \int_{a}^{x} f(t) dt, \qquad x \in [a, b]$$
 (1.9)

(F si chiama funzione integrale di f, con punto iniziale a). Allora F è una antiderivata (o primitiva) di f, ossia F è derivabile e F'(x) = f(x) per ogni x in [a,b]:

$$\frac{d}{dx}\left(\int_{a}^{x} f(t) dt\right) = f(x) \tag{1.10}$$

2 (Formula di Newton-Leibniz)

Se G è una qualunque antiderivata (o primitiva) di f su [a,b] (ossia G è una funzione differenziabile su [a,b] tale che G'(x)=f(x) per ogni $x \in [a,b]$), allora

$$\int_{a}^{b} f(t) dt = G(b) - G(a)$$
 (1.11)

Dimostrazione

1. (Derivata della funzione integrale) Fissiamo un punto x in [a, b]. Allora

$$\frac{F(x+h) - F(x)}{h} = \frac{1}{h} \left[\int_{a}^{x+h} f(t) dt - \int_{a}^{x} f(t) dt \right] = \frac{1}{h} \int_{x}^{x+h} f(t) dt = f(c) \quad (1.12)$$

dove c è un opportuno punto tra x e x + h. La (1.12) segue dal Teorema della Media Integrale, applicato all'intervallo di estremi x e x + h. Quando h tende a zero, il punto c, compreso tra x e x + h, tende a x. Poiché f è continua, f(c) tende a f(x) e quindi

$$\lim_{h \to 0} \frac{F(x+h) - F(x)}{h} = f(x) \tag{1.13}$$

Dunque F'(x) = f(x).

2. (Formula di Newton-Leibniz)

Sia G(x) una qualunque primitiva di f(x) su [a, b]. Poiché

$$G'(x) = f(x) = F'(x)$$

le due funzioni G(x) e $F(x) = \int_a^x f(t) dt$ hanno la stessa derivata sull'intervallo [a, b]. Quindi differiscono per una costante:

$$G(x) = \int_{a}^{x} f(t) dt + c \tag{1.14}$$

Ponendo in questa uguaglianza prima x = b e poi x = a e sottraendo, si ottiene la tesi:

$$G(b) - G(a) = \left[\int_{a}^{b} f(t) dt + c \right] - \left[\int_{a}^{a} f(t) dt + c \right]$$
 (1.15)

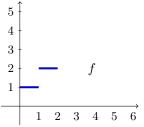
$$= \int_{a}^{b} f(t) dt \tag{1.16}$$

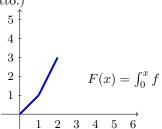
Q.E.D.

Osservazione 1 Si noti che il Teorema Fondamentale del Calcolo Integrale dice che la funzione integrale $F(x) = \int_a^x f(t) dt$ è derivabile quando f è continua. Se invece f è integrabile ma non continua, non è detto che $F(x) = \int_a^x f(t) dt$ sia derivabile. Ad esempio, consideriamo la funzione

$$[0,2] \xrightarrow{f} \mathbb{R}$$
 $f(t) = \begin{cases} 1 & 0 \le t \le 1 \\ 2 & 1 < t \le 2 \end{cases}$

La funzione f è (Riemann-)integrabile su [0,2] (con $\int_0^2 f=3$), ma non è continua in $x_0=1$. La funzione integrale $F(x)=\int_a^x f(t)\,dt$ è comunque ben definita, e anch'essa ha dominio [0,2], ma non è derivabile in $x_0=1$. Infatti, in tale punto la funzione integrale F è ancora continua (la funzione integrale F è sempre continua, anche quando f non lo è), ma non è derivabile. Infatti, la derivata sinistra di F in $x_0=1$ vale 1, mentre la derivata destra è uguale a 2. (Si vedano i grafici qui sotto.)





Osservazione 2 Si noti che dal Teorema Fondamentale del Calcolo Integrale segue che, se la funzione integranda f è di classe C^0 (ossia, è continua), la sua funzione integrale F è di classe C^1 . Di conseguenza, se f è di classe C^k , F è di classe C^{k+1} .

Osservazione 3 Abbiamo dimostrato che la derivata della funzione integrale coincide con la funzione integranda ($Teorema\ Fondamentale\ del\ Calcolo\ Integrale$) sotto l'ipotesi che la funzione integranda f sia continua $su\ tutto\ l'intervallo\ [a,b]$, cioè continua $in\ ogni\ punto\ x\in [a,b]$. Ma quest'ultima ipotesi si più indebolire. Si può infatti dimostrare che se esiste un punto x_0 in cui f è continua, la funzione integrale F è derivabile in quel punto x_0 . Ovviamente, quest'ultimo enunciato implica il precedente. Più precisamente, vale questa formulazione del $Teorema\ Fondamentale\ del\ Calcolo\ Integrale$, della quale, per completezza, riportiamo la dimostrazione.

Teorema 1.4 (TFCI, Caso 'puntuale'; f integrabile e continua in un punto). Sia $[a,b] \xrightarrow{f} \mathbb{R}$ una funzion integrabile su [a,b]. Definiamo F su [a,b] ponendo

$$F(x) = \int_{a}^{x} f(t) dt \tag{1.17}$$

Se f è continua in un punto $x_0 \in [a,b]$, allora F è derivabile in x_0 e $F'(x_0) = f(x_0)$. (Se $x_0 = a$, oppure $x_0 = b$, con $F'(x_0)$ intendiamo, rispettivamente, la derivata di F da destra, o da sinistra.)

Dimostrazione

Sia $x_0 \in (a, b)$. Dimostriamo dapprima che la funzione integrale F di punto iniziale a, definita da

$$F(x) = \int_{a}^{x} f(t) dt$$

è derivabile a destra in x_0 e $F'_+(x_0) = f(x_0)$. Poiché f è continua in x_0 , dato $\varepsilon > 0$ esiste un $\delta > 0$ tale che se $x_0 \le x < x_0 + \delta$, allora

$$f(x_0) - \varepsilon < f(x) < f(x_0) + \varepsilon \tag{1.18}$$

Sia $0 < h < \delta$. Integrando sull'intervallo $[x_0, x_0 + h]$, e usando la proprietà di monotonia, otteniamo

$$(f(x_0) - \varepsilon).h < \int_{x_0}^{x_0+h} f < (f(x_0) + \varepsilon).h \tag{1.19}$$

Ora $\int_{x_0}^{x_0+h} f = F(x_0+h) - F(x_0)$. (Infatti, $F(x_0+h) - F(x_0) = \int_a^{x_0+h} f - \int_a^{x_0} f = \int_{x_0}^{x_0+h} f$). Dunque le disuguaglianze (1.19) si scrivono

$$(f(x_0) - \varepsilon) \cdot h < F(x_0 + h) - F(x_0) < (f(x_0) + \varepsilon) \cdot h$$
 (1.20)

Se dividiamo per h > 0, otteniamo

$$f(x_0) - \varepsilon < \frac{F(x_0 + h) - F(x_0)}{h} < f(x_0) + \varepsilon$$

$$(1.21)$$

Ma, poiché ε è arbitrario, concludiamo che

$$\lim_{h \to 0^+} \frac{F(x_0 + h) - F(x_0)}{h} = f(x_0) \tag{1.22}$$

Questo significa che la derivata destra di F in x_0 esiste ed è uguale a $f(x_0)$.

Nello stesso modo si dimostra che F è derivabile da sinistra in x_0 , e $F'_-(x_0) = f(x_0)$. Quindi F è derivabile in x_0 e $F'(x_0) = f(x_0)$. La stessa dimostrazione vale anche quando $x_0 = a$ (oppure $x_0 = b$). In questo caso, F è derivabile solo da destra (rispttivamente, solo da sinistra) e $F'_+(a) = f(a)$ (rispettivamente, $F'_+(b) = f(b)$).

Q.E.D.

1.4 Integrabilità di $1/x^a$ in un intorno di $+\infty$

Teorema 1.5 (Integrabilità di $1/x^a$ in un intorno di $+\infty$). L'integrale generalizzato

$$\int_{1}^{+\infty} \frac{1}{x^{a}} dx \quad \begin{cases} \dot{e} \ divergente & se \ a \le 1 \\ \dot{e} \ convergente & se \ a > 1 \end{cases}$$
 (1.23)

Dimostrazione Se a = 1, abbiamo

$$\int_{1}^{+\infty} \frac{1}{x} dx = \lim_{t \to +\infty} \int_{1}^{t} \frac{1}{x} dx = \lim_{t \to +\infty} (\ln t - \ln 1) = +\infty$$
 (1.24)

e quindi l'integrale $\int_1^{+\infty} \frac{1}{x} dx$ è divergente. Se $a \neq 1$, si ha

$$\int_{1}^{t} \frac{1}{x^{a}} dx = \frac{1}{1-a} \left[x^{1-a} \right]_{1}^{t} = \frac{1}{1-a} (t^{1-a} - 1)$$
 (1.25)

Ora

$$\lim_{t \to +\infty} \frac{1}{1-a} (t^{1-a} - 1) = \left\{ \begin{array}{ll} +\infty & \text{ se } a < 1 \\ \frac{1}{a-1} & \text{ se } a > 1 \end{array} \right.$$

Riassumendo:

$$\int_{1}^{+\infty} \frac{1}{x^{a}} dx \qquad \begin{cases} \text{è divergente} & \text{se } a \leq 1\\ \text{è convergente} & \text{se } a > 1 \end{cases}$$
 (1.26)

Q.E.D.

1.5 Criterio del confronto asintotico per le serie

Come per gli integrali generalizzati, anche per le serie numeriche *a termini positivi* valgono il criterio del confronto e il criterio del confronto asintotico.

Per completezza, premettiamo il criterio del confronto (del quale il criterio del confronto asintotico è conseguenza).

Teorema 1.6 (Criterio del confronto). Siano a_n e b_n successioni reali e supponiamo che per qualche $K \in \mathbb{N}$ si abbia

$$0 \le a_n \le b_n \qquad per \quad n \ge K \tag{1.27}$$

Allora:

- (a) La convergenza di $\sum b_n$ implica la convergenza di $\sum a_n$.
- (b) La divergenza di $\sum a_n$ implica la divergenza di $\sum b_n$.

Dimostrazione. Se $S_k = a_0 + \cdots + a_k$ e $S'_k = b_0 + \cdots + b_k$, dalle disuguaglianze (1.27) segue

$$0 \le S_k \le S'_k$$

Quindi: se la successione S'_k converge, allora la successione S_k converge; e se la successione S_k diverge, allora la successione S'_k diverge.

Ricordiamo ora la relazione di equivalenza asintotica tra successioni:

Date due successioni reali positive a_n e b_n $(n \in \mathbb{N})$, si dice che a_n è asintoticamente equivalente a b_n , e si scrive

$$a_n \sim b_n \quad \text{per } n \to +\infty$$

se
$$\lim_{n} \frac{a_n}{b_n} = 1$$
.

Teorema 1.7 (Criterio del confronto asintotico). Siano a_n e b_n successioni reali positive. Supponiamo $a_n \sim b_n$ per $n \to +\infty$. Allora le due serie $\sum_n a_n$ e $\sum_n b_n$ hanno lo stesso carattere, vale a dire entrambe convergono oppure entrambe divergono $a + \infty$.

 $\begin{array}{ll} \textit{Dimostrazione.} \ \ \text{Per ipotesi, lim} \ \frac{a_n}{b_n} = 1. \ \ \text{Per definizione di limite, questo significa:} \\ \text{fissato} \ \varepsilon > 0, \ \text{per tutti gli} \ n \in \mathbb{N} \ \text{sufficientemente grandi, si ha} \end{array}$

$$\left| \frac{a_n}{b_n} - 1 \right| < \varepsilon \tag{1.28}$$

cioè:

$$1 - \varepsilon < \frac{a_n}{b_n} < 1 + \varepsilon \tag{1.29}$$

Per i nostri scopi, ci basta fissare un qualunque valore di ε per il quale si abbia $1-\varepsilon>0$ (in modo tale che le disuguaglianze seguenti siano tutte tra termini positivi). Diciamo, ad esempio, $\varepsilon=\frac{1}{2}$; dunque, $1-\varepsilon=\frac{1}{2}$ e $1+\varepsilon=\frac{3}{2}$. Scriviamo allora la (1.29) come

$$\frac{1}{2} < \frac{a_n}{b_n} < \frac{3}{2} \tag{1.30}$$

Poiché $b_n > 0$, la (1.29) equivale (per n sufficientemente grande) alle disuguaglianze tra termini positivi:

$$\frac{1}{2}b_n < a_n < \frac{3}{2}b_n \tag{1.31}$$

La tesi segue allora dalle disuguaglianze (1.31) e dal Criterio del Confronto (1.6). Infatti:

- 1. Se $\sum_n a_n$ converge, allora, poiché $\frac{1}{2}b_n < a_n$, anche $\sum_n \frac{1}{2}b_n$ converge. Quindi anche $\sum_n b_n$ converge.
- 2. Se $\sum_n a_n$ diverge a $+\infty$, allora, poiché $a_n < \frac{3}{2}b_n$, anche $\sum_n \frac{3}{2}b_n$ diverge a $+\infty$. Quindi $\sum_n b_n$ diverge a $+\infty$.

1.6 Criterio della radice (di Cauchy) per le serie

Teorema 1.8 (Criterio della radice). Sia $\sum_n a_n$ una serie a termini positivi, e supponiamo che esista il limite

$$\lim_{n \to +\infty} \sqrt[n]{a_n} = L \tag{1.32}$$

Allora:

- 1. Se $0 \le L < 1$ la serie $\sum_n a_n$ converge.
- 2. Se L > 1, o $L = +\infty$, la serie $\sum_{n} a_n$ diverge $a + \infty$.

Dimostrazione. 1. Supponiamo $0 \le L < 1.$ Scegliamo un q che soddisfiL < q < 1. Poiché $\sqrt[p]{a_n} \to L < q,$ esiste n_0 tale che

$$\sqrt[n]{a_n} < q \tag{1.33}$$

per tutti gli $n > n_0$. Allora avremo $a_n < q^n$ per tutti gli $n > n_0$, e siccome la serie geometrica $\sum_n q^n$ converge (in quanto q < 1), concludiamo, per il *Criterio del Confronto* (Teorema 1.6) che anche la serie $\sum_n a_n$ converge.

2. Se invece L > 1, si avrà definitivamente $\sqrt[n]{a_n} > 1$, e quindi (elevando alla potenza n-esima), si ha definitivamente (cioè, per tutti gli n sufficientemente grandi) $a_n > 1$. Pertanto, la successione a_n non tende a zero, e quindi la serie $\sum_n a_n$ non converge (altrimenti, la successione a_n tenderebbe a zero). Quindi la serie $\sum_n a_n$ diverge a $+\infty$ (non potendo oscillare, in quanto, essendo una serie a termini positivi, non può oscillare, perché la somma delle somme parziali è crescente).

Osservazione Nel caso si abbia

$$\lim_{n \to +\infty} \sqrt[n]{a_n} = L = 1$$

non si può concludere nulla. Per convincersene, consideriamo le due serie

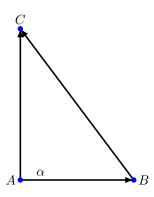
$$\sum_{n=1}^{+\infty} \frac{1}{n}, \qquad \qquad \sum_{n=1}^{+\infty} \frac{1}{n^2}$$

In entrambi i casi, si ha $\lim_{n\to+\infty} \sqrt[n]{a_n} = L = 1$, ma le due serie si comportano in modo diverso: la prima diverge a $a + \infty$, la seconda converge.

1.7 Teorema di Pitagora (e teorema di Carnot)

Teorema 1.9 (Teorema di Pitagora). In un triangolo rettangolo, siano a, b, c le lunghezze, rispettivamente, dell'ipotenusa e dei cateti. Allora

$$a^2 = b^2 + c^2 (1.34)$$



$$a^{2} = |\overrightarrow{BC}|^{2} = |\overrightarrow{AC} - \overrightarrow{AB}|^{2}$$

$$= (\overrightarrow{AC} - \overrightarrow{AB}) \cdot (\overrightarrow{AC} - \overrightarrow{AB})$$

$$= \overrightarrow{AC} \cdot \overrightarrow{AC} - 2\overrightarrow{AB} \cdot \overrightarrow{AC} + \overrightarrow{AB} \cdot \overrightarrow{AB}$$

$$= |\overrightarrow{AC}|^{2} + |\overrightarrow{AB}|^{2}$$

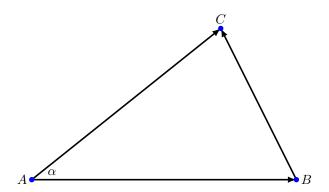
$$= b^{2} + c^{2}$$

Più in generale, vale il:

Teorema 1.10 (Teorema di Carnot). In un triangolo qualunque ABC, chiamiamo a,b,c le lunghezze dei lati che sono opposti, rispettivamente, ai vertici A,B,C, e sia α l'angolo di vertice A. Allora

$$a^2 = b^2 + c^2 - 2bc\cos\alpha (1.35)$$

 $Dimostrazione. \quad \text{Consideriamo i tre vettori } \overrightarrow{AB}, \ \overrightarrow{AC} \ \text{e} \ \overrightarrow{BC} = \overrightarrow{AC} - \overrightarrow{AB}.$



Allora:

$$|\overrightarrow{BC}|^{2} = |\overrightarrow{AC} - \overrightarrow{AB}|^{2}$$

$$= \left(\overrightarrow{AC} - \overrightarrow{AB}\right) \cdot \left(\overrightarrow{AC} - \overrightarrow{AB}\right)$$

$$= \overrightarrow{AC} \cdot \overrightarrow{AC} - 2\overrightarrow{AB} \cdot \overrightarrow{AC} + \overrightarrow{AB} \cdot \overrightarrow{AB}$$

$$= |\overrightarrow{AC}|^{2} + |\overrightarrow{AB}|^{2} - 2|\overrightarrow{AC}| |\overrightarrow{AB}| \cos \alpha$$

Poiché

$$|\overrightarrow{BC}| = a, \quad |\overrightarrow{AC}| = b, \quad |\overrightarrow{AB}| = c,$$

abbiamo

$$a^2 = b^2 + c^2 - 2bc\cos\alpha (1.36)$$

come volevamo dimostrare. Si noti che se l'angolo α è retto (e quindi $\cos\alpha=0$), ritroviamo il teorema di Pitagora:

$$a^2 = b^2 + c^2 (1.37)$$

1.8 Derivata di un vettore di lunghezza costante

Teorema 1.11 (Derivata di un vettore di lunghezza costante). Se la lunghezza di un vettore $\mathbf{v}(t)$ in \mathbb{R}^3 (o \mathbb{R}^2) è costante (al variare di t in un intervallo I di \mathbb{R}), allora il vettore derivato $\mathbf{v}'(t)$ è ortogonale a $\mathbf{v}(t)$.

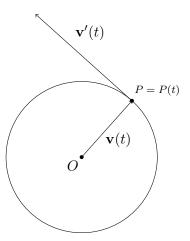
Dimostrazione Poiché $|\mathbf{v}(t)|^2 = \mathbf{v}(t) \cdot \mathbf{v}(t)$ è costante, la sua derivata (che si calcola con la Regola di Leibniz) è nulla:

$$0 = (\mathbf{v}(t) \cdot \mathbf{v}(t))' = \mathbf{v}'(t) \cdot \mathbf{v}(t) + \mathbf{v}(t) \cdot \mathbf{v}'(t) = 2\mathbf{v}'(t) \cdot \mathbf{v}(t)$$

Ne segue che $\mathbf{v}'(t)$ è ortogonale a $\mathbf{v}(t)$.

Q.E.D.

Osservazione (Una interpretazione cinematica.) Supponiamo che $\mathbf{v}(t) \in \mathbb{R}^2$ ($t \in \mathbb{R}$) abbia lunghezza costante. Se pensiamo a $\mathbf{v}(t)$ come a un vettore spiccato dall'origine O di \mathbb{R}^2 , tale vettore, avendo lunghezza costante, descrive il moto di un punto P = P(t) che si muove sulla circonferenza di centro O e raggio uguale alla lunghezza di $\mathbf{v}(t)$.



Il vettore $\mathbf{v}'(t)$ si interpreta allora come il vettore velocità istantanea all'istante t. Pertanto $\mathbf{v}'(t)$ è tangente alla traiettoria (la circonferenza) e quindi è ortogonale al raggio $\mathbf{v}(t)$. (Il fatto che $\mathbf{v}(t)$ abbia lunghezza costante non implica che $\mathbf{v}'(t)$ abbia lunghezza costante; ossia, il moto è circolare, ma non necessariamente uniforme).

Applicazione (Definizione del vettore normale \mathbf{N}). Sia $I \xrightarrow{\alpha} \mathbb{R}^3$ una curva parametrizzata alla lunghezza d'arco. Allora il vettore tangente $\mathbf{T}(s) = \underline{\alpha'}(s)$ ha lunghezza costante, uguale a 1. Sia $s \in I$ un valore del parametro per il quale si abbia $\mathbf{T}'(s) \neq 0$. Allora il vettore normale $\mathbf{N} = \mathbf{N}(s)$ in s è il vettore unitario, ortogonale a $\mathbf{T}(s)$, definito dall'uguaglianza

$$\mathbf{T}'(s) = k(s)\,\mathbf{N}(s)\tag{1.38}$$

dove $k(s) = |\mathbf{T}'(s)| > 0$ è la curvatura in s.

1.9 Proiezione di un vettore lungo un altro

Teorema 1.12 (Proiezione di un vettore lungo un altro). Sia $\mathbf{b} \in \mathbb{R}^3$ un vettore non nullo. Ogni vettore $\mathbf{a} \in \mathbb{R}^3$ si scrive in modo unico come

$$\mathbf{a} = \mathbf{P_b}(\mathbf{a}) + \mathbf{a}_{\perp} \tag{1.39}$$

con $\mathbf{P_b}(\mathbf{a})$ parallelo a \mathbf{b} (cioè, multiplo di \mathbf{b}) e \mathbf{a}_{\perp} ortogonale a \mathbf{b} . Si ha:

$$\mathbf{P_b}(\mathbf{a}) = \left(\frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}}\right) \mathbf{b} \tag{1.40}$$

Definizione Il vettore $P_b(a)$ si chiama proiezione ortogonale di a lungo b.

Dimostrazione Si deve avere $P_{\mathbf{b}} \mathbf{a} = t \mathbf{b}$, per un opportuno scalare $t \in \mathbb{R}$. Il vettore $\mathbf{a} - P_{\mathbf{b}} \mathbf{a} = \mathbf{a} - t \mathbf{b}$ è ortogonale a \mathbf{b} se e solo se

$$(\mathbf{a} - t\mathbf{b}) \cdot (\mathbf{b}) = 0$$

ossia (per bilinearità) se e solo se

$$\mathbf{a} \cdot \mathbf{b} - t(\mathbf{b} \cdot \mathbf{b}) = 0 \tag{1.41}$$

Questa è un'equazione di primo grado in t. Poiché $\mathbf{b} \cdot \mathbf{b} \neq 0$ (perché $\mathbf{b} \neq 0$), l'equazione (1.41) ha un'unica soluzione

$$t = \frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}}$$

Dunque, la proiezione ortogonale di a lungo b è

$$P_{\mathbf{b}} \mathbf{a} = \left(\frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}}\right) \mathbf{b} \tag{1.42}$$

Q.E.D.

Osservazione 1 Se $|\mathbf{u}| = 1$, la formula che dà la proiezione ortogonale si semplifica nel modo seguente:

$$P_{\mathbf{u}} \mathbf{a} = (\mathbf{a} \cdot \mathbf{u}) \mathbf{u}$$
 (Vale solo se $|\mathbf{u}| = 1$).

Osservazione 2 La stessa dimostrazione e la stessa formula continuano a valere per vettori \mathbf{a}, \mathbf{b} ($\mathbf{b} \neq 0$) in un qualunque spazio euclideo \mathbb{R}^n .

1.10 Equivalenza di due definizioni di curvatura

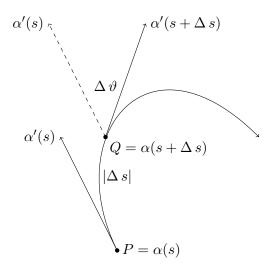


Figura 1: Chiamiamo $\Delta \vartheta(>0)$ l'ampiezza dell'angolo tra i due vettori tangenti unitari $\alpha'(s+\Delta s)$ e $\alpha'(s)$, tangenti alla curva α rispettivamente nei punti $Q=\alpha(s+\Delta s)$ e $P=\alpha(s)$. Poiché il parametro è la lunghezza d'arco (misurata a partire da un punto fissato sulla curva), la distanza, misurata sulla curva, tra $P\in Q$ è data da $|\Delta s|$. Il rapporto $\Delta \vartheta/|\Delta s|$ dà una misura di quanto la curva α si discosti dalla direzione tangente nel punto $\alpha(s)$ lungo il tratto $|\Delta s|$. Il limite $\kappa(s)=\lim_{\Delta s\to 0} \Delta \vartheta/|\Delta s|$ è, per definizione, la curvatura nel punto $P=\alpha(s)$. La curvatura $\kappa(s)$ in s è dunque una misura della rapidità con la quale la curva si discosta dalla direzione tangente in s.

Teorema 1.13 (Equivalenza di due definizioni di curvatura). Sia $I \xrightarrow{\alpha} \mathbb{R}^3$ una curva di classe¹ C^2 e regolare², parametrizzata mediante la lunghezza d'arco. Fissiamo un punto $P = \alpha(s)$ sulla curva e sia $Q = \alpha(s + \Delta s)$ un punto sulla curva vicino a P. Chiamiamo $\Delta \vartheta(>0)$ l'angolo fra i vettori tangenti in P e Q. Definiamo la curvatura $\kappa(s)$, $s \in I$, come:

$$\kappa(s) = \lim_{\Delta s \to 0} \frac{\Delta \vartheta}{|\Delta s|} \tag{1.43}$$

Allora $\kappa(s)$ è uguale al modulo del vettore accelerazione $\alpha''(s)$:

$$\kappa(s) = |\alpha''(s)| \tag{1.44}$$

Nota. Poiché, per definizione, $\mathbf{T}(s) = \alpha'(s)$, e quindi $\alpha''(s) = \mathbf{T}'(s)$, l'uguaglianza (1.44) si può scrivere anche:

$$\kappa(s) = |\mathbf{T}'(s)| \tag{1.45}$$

Dimostrazione Poiché i vettori tangenti $\alpha'(s)$ e $\alpha'(s+\Delta s)$ sono unitari (cioè di lunghezza uno) e formano un angolo $\Delta \vartheta$, si ha

$$|\alpha'(s + \Delta s) - \alpha'(s)| = 2\sin\frac{\Delta\vartheta}{2}$$
(1.46)

¹Una curva parametrizzata $I \xrightarrow{\alpha} \mathbb{R}^3$, $\alpha(t) = (x(t), y(t), z(t))$ si dice di classe C^2 se le sue componenti x(t), y(t), z(t) sono funzioni di classe C^2 , cioè derivabili due volte con derivata seconda continua.

²Una curva parametrizzata $I \xrightarrow{\alpha} \mathbb{R}^3$ si dice *regolare* se il suo vettore tangente $\alpha'(t)$ è diverso dal vettore nullo, per ogni $t \in I$.

come si vede dalla figura qui sotto:

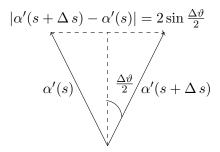


Figura 2: Il lato del triangolo isoscele è lungo 1 e l'angolo al vertice è $\Delta \vartheta$. Quindi la base è $2\sin\frac{\Delta\vartheta}{2}$. Ma la base è la differenza vettoriale tra i lati; quindi la sua lunghezza è $|\alpha'(s+\Delta s)-\alpha'(s)|$. Dunque $|\alpha'(s+\Delta s)-\alpha'(s)|=2\sin\frac{\Delta\vartheta}{2}$.

Dunque,

$$\frac{|\alpha'(s + \Delta s) - \alpha'(s)|}{|\Delta s|} = \frac{2\sin\frac{\Delta\vartheta}{2}}{|\Delta s|}$$
$$= \frac{\sin\frac{\Delta\vartheta}{2}}{\frac{\Delta\vartheta}{2}} \cdot \frac{\Delta\vartheta}{|\Delta s|}$$

Si noti che quando $\Delta s \to 0$, anche $\Delta \vartheta \to 0$. Allora, quando $\Delta s \to 0$, il primo membro tende a $|\alpha''(s)|$, mentre il secondo membro tende³ a $\kappa(s)$. Dunque, abbiamo dimostrato che

$$\kappa(s) = |\alpha''(s)| \tag{1.47}$$

Q.E.D.

³Si noti che $\lim_{\Delta\vartheta\to 0} \frac{\sin\frac{\Delta\vartheta}{2}}{\frac{\Delta\vartheta}{2}} = 1$ e $\lim_{\Delta s\to 0} \frac{\Delta\vartheta}{|\Delta s|} = \kappa(s)$ per definizione.