Politecnico di Milano. Scuola di Ingegneria Industriale e dell'Informazione ${\bf Analisi~e~Geometria~1}$

Federico Lastaria

Limiti. Continuità.

10 Ottobre 2022

Indice

1	Pri	me nozioni di topologia dell'asse reale	3			
	1.1	Intorni. Insiemi aperti, insiemi chiusi. Compatti	3			
	1.2	Punti di accumulazione. Teorema di Bolzano-Weierstrass	4			
	1.3	Caratterizzazione degli insiemi chiusi	5			
2	Limiti					
	2.1	Definizioni dei vari tipi di limite	6			
	2.2	Alcuni teoremi sui limiti	8			
		2.2.1 Teorema dell'unicità del limite	9			
		2.2.2 Teorema del confronto	9			
		2.2.3 Teorema di permanenza del segno	10			
		2.2.4 Teorema sulla somma, prodotto e quoziente di limiti	11			
	2.3	Le funzioni $\sin x$ e $\cos x$ vicino a zero	11			
	2.4	Simbolo di <i>o</i> -piccolo	14			
	2.5	Relazione \sim di equivalenza asintotica	14			
3	Asintoti 16					
	3.1	Definizioni	16			
	3.2	Regola per trovare gli asintoti obliqui	17			
4	Alc	uni limiti notevoli	18			

5	Fun	zioni reali continue	2 0	
	5.1	Definizione di funzioni continua	20	
	5.2	Prime proprietà delle funzioni continue	21	
	5.3	Composizione di funzioni continue	22	
	5.4	Le funzioni continue preservano i limiti di successioni	24	
6	Proprietà delle funzioni reali continue su un intervallo			
	6.1	Intervalli	26	
	6.2	Il teorema degli zeri per le funzioni continue	27	
	6.3	Teorema dei valori intermedi	28	
		6.3.1 Proprietà di Darboux. (Argomento facoltativo)	29	
	6.4	Continuità della funzione inversa	29	
		6.4.1 La funzione radice quadrata	32	
	6.5	Teorema di Weierstrass	32	

1 Prime nozioni di topologia dell'asse reale

1.1 Intorni. Insiemi aperti, insiemi chiusi. Compatti.

Ricordiamo la definizione di distanza in \mathbb{R} .

Definizione 1.1. Si chiama distanza tra due numeri reali x, y, e si denota d(x, y), il valore assoluto della loro differenza:

$$d(x,y) = |x - y| \tag{1.1}$$

Definizione 1.2 (Intorno di un punto). Sia x_0 un punto in \mathbb{R} e sia r un numero reale positivo. Si chiama intorno di centro x_0 e raggio r (> 0) il sottoinsieme $I(x_0; r) \subset \mathbb{R}$ costituito dai punti di \mathbb{R} la cui distanza da x_0 è minore di r:

$$I(x_0; r) = \{ x \in \mathbb{R} \mid d(x, x_0) < r \}$$
(1.2)

In termini più espliciti, l'intorno $I(x_0;r)$ è l'intervallo aperto

$$I(x_0; r) = (x_0 - r, x_0 + r)$$

ovvero è l'intervallo costituito da tutti i punti x in \mathbb{R} che sono compresi tra $x_0 - r$ e $x_0 - r$:

$$I(x_0; r) = \{ x \in \mathbb{R} \mid x_0 - r < x < x_0 + r \}$$

(Si noti che i punti $x_0 - r$ e $x_0 - r$ non appartengono a $I(x_0; r)$.)

Osservazione. L'intersezione $I(x_0; r_1) \cap I(x_0; r_2)$ di due intorni di uno stesso punto x_0 , di raggi positivi r_1 e r_2 , è ancora un intorno di x_0 . Precisamente,

$$I(x_0; r_1) \cap I(x_0; r_2) = I(x_0; r)$$

dove $r = \min\{r_1, r_2\}.$

Definizione 1.3 (Insieme aperto in \mathbb{R}). Un insieme $U \subset \mathbb{R}$ è aperto in \mathbb{R} (o è un aperto di \mathbb{R}) se per ogni punto x in U esiste un intorno I(x;r) = (x-r,x+r) di centro x e raggio positivo r, tale che $I(x;r) \subset U$.

Esempi. L'intera retta reale \mathbb{R} è un aperto di \mathbb{R} ; l'insieme vuoto \emptyset è un aperto di \mathbb{R} ; tutti gli intervalli del tipo (a,b), $a,b \in \mathbb{R}$, a < b, definiti nel modo seguente:

$$(a,b) = \{ x \in \mathbb{R} \mid a < x < b \},\$$

sono insiemi aperti di \mathbb{R} ; gli intervalli del tipo [a,b), [a,b], $[a,+\infty)$, $(-\infty,b]$ non sono aperti; l'unione $(a,b) \cup (c,d)$ di due intervalli aperti è un aperto.

Definizione 1.4 (Insieme chiuso in \mathbb{R}). Un insieme $F \subset \mathbb{R}$ si dice chiuso in \mathbb{R} se il suo complementare $\mathbb{R} \setminus F$ è aperto.

Ricordiamo che l'insieme complementare $\mathbb{R} \setminus F$ di F in \mathbb{R} – che si denota anche F^C o $\mathcal{C}F$ o F' – è l'insieme costituito da tutti i punti di \mathbb{R} che non appartengono a F:

$$CF = \mathbb{R} \setminus F = \{ y \in \mathbb{R} \mid y \notin F \}$$
 (1.3)

Definizione 1.5 (Sottoinsieme limitato di \mathbb{R}). Un insieme $X \subset \mathbb{R}$ si dice limitato se esiste una costante $K \in \mathbb{R}$ tale che, per ogni x in X, si ha

$$|x| < K \tag{1.4}$$

Esempi. L'intera retta reale \mathbb{R} e l'insieme vuoto \emptyset sono chiusi; tutti gli intervalli del tipo $[a,b],\ a,b\in\mathbb{R}$, sono insiemi chiusi; gli intervalli del tipo $[a,b),\ (a,b),\ (a,+\infty),\ (-\infty,b)$ non sono chiusi; la semiretta $[a,+\infty)$ è un insieme chiuso; l'unione $[a,b]\cup[c,d]$ di due intervalli chiusi è un chiuso.

Si noti che l'insieme \mathbb{R} e l'insieme vuoto sono sia aperti, sia chiusi di \mathbb{R} . (In effetti, sono gli unici sottoinsiemi di \mathbb{R} a essere sia aperti, sia chiusi.)

Si noti anche che esistono sottoinsiemi di \mathbb{R} che non sono né aperti, né chiusi. Ad esempio, l'intervallo (0,1] non è né aperto, né chiuso.

Definizione 1.6 (Insieme compatto di \mathbb{R}). Un insieme $K \subset \mathbb{R}$ si dice compatto se è chiuso e limitato.

Esempi. Ogni intervallo del tipo [a,b] (con $a,b \in \mathbb{R}$) è compatto; l'unione di due compatti è un compatto. Ogni insieme finito è un compatto. (Ricordiamo che un insieme si dice *finito* se la sua cardinalità è finita, cio è se ha un numero finito di elementi.)

1.2 Punti di accumulazione. Teorema di Bolzano-Weierstrass.

Definizione 1.7. Sia S un sottoinsieme di \mathbb{R} . Un punto x_0 in \mathbb{R} si dice punto di accumulazione di S se ogni intorno di x_0 contiene infiniti punti di S.

Un esempio: Poniamo $S = \{\frac{1}{n}, n \in \mathbb{N}, n > 0\}$. L'insieme S ha un unico punto di accumulazione, il numero 0 (che non appartiene a S).

Un altro esempio: Poniamo S = (a, b) (dove a, b sono numeri reali, a < b). I punti di accumulazione di S sono esattamente i punti dell'intervallo chiuso [a, b].

Teorema 1.8 (Bolzano-Weierstrass). $Sia\ S \subset \mathbb{R}$ un sottoinsieme di \mathbb{R} limitato e infinito (cio è, con infiniti elementi). Allora esiste (almeno) un punto $x_0 \in \mathbb{R}$ che è punto di accumulazione per S.

Dimostrazione. Sia [a,b] un qualunque intervallo chiuso e limitato che contenga S:

$$S \subset [a, b]$$

(Un tale intervallo esiste senz'altro, perché S è limitato; basta che a sia una qualunque limitazione inferiore di S, e che b sia una qualunque limitazione superiore di S).

Dimezziamo l'intervallo $I_0 = [a, b]$, ossia consideriamo i due sotto-intervalli $[a, m_0]$ e $[m_0, b]$, dove m_0 è il punto medio di I_0 . Almeno uno di questi due sotto-intervalli, chiamiamolo I_1 , deve contenere infiniti punti di S (altrimenti S sarebbe un insieme finito).

Procedendo nello stesso modo, ora dimezziamo l'intervallo I_1 . Almeno una delle due metà, chiamiamola I_2 , contiene infiniti punti di S. Iterando, costruiamo una successione di intervalli chiusi inscatolati

$$I_0 \supset I_1 \supset I_2 \supset \cdots \supset I_n \supset \cdots$$

le cui ampiezze tendono a zero². Per il teorema degli intervalli inscatolati, esiste esattamente un punto, chiamiamolo x_0 , che appartiene a I_n per ogni n. Dimostriamo che x_0 è un punto di accumulazione di S. Sia $I(x_0; r)$ un qualsiasi intorno di x_0 , di raggio positivo r. Non appena l'ampiezza $\frac{b-a}{2^n}$ di I_n diventa minore di r, l'intorno $I(x_0; r)$ include interamente l'intervallo I_n , che (per il modo in cui è stato costruito) contiene infiniti punti di S. Dunque, anche $I(x_0; r)$ contiene infiniti punti di S. Ne segue che x_0 è un punto di accumulazione di S.

1.3 Caratterizzazione degli insiemi chiusi

Teorema 1.9 (Caratterizzazione dei chiusi in termini di successioni). Un sottoinsieme F di \mathbb{R} è chiuso se e solo se soddisfa la proprietà seguente:

Per ogni successione
$$x_n$$
 in F , se x_n converge a $x \in \mathbb{R}$, allora $x \in F$. (1.5)

Dimostrazione.

Parte 1) Se
$$F \subset \mathbb{R}$$
 è chiuso, allora vale la proprietà 1.5

Supponiamo che F sia chiuso e supponiamo che x_n sia una successione di elementi di F che converge a $x \in \mathbb{R}$. Dimostriamo che x appartiene a F. Supponiamo, per assurdo, che x non appartenga a F, ossia supponiamo che x stia nel complementare $A = \mathbb{R} \setminus F$. Siccome A è aperto, esiste un intorno U di x tale che $U \subset A$. In U non cade alcun punto di F (perché U è tutto contenuto nel complementare di F). Ma allora (per definizione di limite di una successione) non puøesistere alcuna successione di F che converge a x. Questo contrasta con la nostra ipotesi. Siamo giunti a un assurdo, quindi x deve appartenere a F.

¹Argomento non trattato a lezione.

²La successione delle ampiezze di I_n è $\frac{b-a}{2^n}$, che ovviamente tende a zero.

Parte 2) Se vale la proprietà 1.5, allora $F \subset \mathbb{R}$ è chiuso.

Supponiamo che valga la proprietà 1.5. Dimostriamo che il complementare di F, cio è l'insieme $A = \mathbb{R} \setminus F$, è aperto. Se A è vuoto, è aperto. Altrimenti sia y un punto in A. Affermiamo che deve esistere un intorno U di y tale che $U \subset A$, e con questo dimostriamo che A è aperto. Infatti, se un tale intorno non esistesse, allora ogni intorno di y conterrebbe almeno un punto di F. Allora, prendendo intorni centrati in y e di raggio $\frac{1}{n}$, n intero positivo, si verrebbe a definire una successione di elementi di F che tende al punto y, che perønon appartiene a F. E questo contraddice la proprietà 1.5.

Dato un insieme $Y \subset \mathbb{R}$, si chiama *chiusura* di Y in \mathbb{R} , e si denota con \overline{Y} (si legge: Y segnato) l'insieme di tutti i numeri reali che sono limiti di successioni di elementi di F:

$$\overline{Y} = \{ y \in \mathbb{R} \mid \text{ Esiste una successione } x_n \text{ in } Y \text{ tale che } x_n \longrightarrow y \}$$
 (1.6)

Dunque \overline{Y} è l'insieme di tutti i limiti di successioni di Y.

Ovviamente vale sempre $Y \subseteq \overline{Y}$, perché ogni elemento $y \in Y$ è limite della successione costante $x_n = y$. Il teorema 1.9 si puøallora enunciare nel modo seguente:

Teorema 1.10. Un insieme Y è chiuso se e solo se $\overline{Y} = Y$, ossia se e solo se coincide con la propria chiusura.

Detto altrimenti, affermare che un insieme Y è chiuso, significa che non si esce fuori da Y considerando i limiti di successioni in Y.

2 Limiti

2.1 Definizioni dei vari tipi di limite

Definizione 2.1 (Limite finito). Sia $D \xrightarrow{f} \mathbb{R}$ una funzione reale definita su insieme $D \subset \mathbb{R}$, e sia x_0 un punto di accumulazione di D. Si dice che

$$\lim_{x \to x_0} f(x) = L, \qquad L \in \mathbb{R}$$
 (2.1)

se per ogni $\varepsilon > 0$ esiste un $\delta > 0$ tale che, per ogni $x \in D$, $x \neq x_0$,

$$|x - x_0| < \delta \implies |f(x) - L| < \varepsilon$$
 (2.2)

Osservazioni.

a) Non si richiede che x_0 apppartenga al dominio D della funzione f, cioè il punto x_0 può appartenere al dominio di f, oppure no. L'unica cosa che si richiede è che x_0 sia punto di accumulazione di D, cioè che ogni intorno di x_0 contenga infiniti punti di D.

b) Qualora x_0 appartenga al dominio di f, l'eventuale esistenza del limite e il suo valore (ammesso che il limite esista), sono del tutto indipendenti dal valore $f(x_0)$. Infatti, nella definizione di limite, il valore $f(x_0)$ non compare affatto.

Se si ricorda la definizione di intorno, si vede subito che la condizione $0 < |x - x_0| < \delta$ equivale a: $x \neq x_0$ e $x \in I(x_0; \delta)$. Analogamente, la condizione $|f(x) - L| < \varepsilon$ equivale a: $f(x) \in I(L; \varepsilon)$. Quindi, la definizione di limite si può parafrasare, in termini di intorni, nel modo seguente.

Definizione 2.2 (Limite finito, in termini di intorni). Sia $D \xrightarrow{f} \mathbb{R}$ una funzione reale definita su insieme $D \subset \mathbb{R}$, e sia x_0 un punto di accumulazione di D. Si dice che

$$\lim_{x \to x_0} f(x) = L, \qquad L \in \mathbb{R}$$
 (2.3)

se per ogni intorno W di L esiste un intorno U di x_0 che soddisfano questa condizione:

$$\forall x \ x \in U, \ x \in D, \ x \neq x_0 \implies f(x) \in W \tag{2.4}$$

Le definizioni di limite destro (o da destra) e di limite sinistro (o da sinistra) sono del tutto simili:

Definizione 2.3 (Limite destro). Sia $D \xrightarrow{f} \mathbb{R}$ una funzione reale definita su insieme $D \subset \mathbb{R}$, e sia x_0 un punto di accumulazione di D. Si dice che

$$\lim_{x \to x_0^+} f(x) = L, \qquad L \in \mathbb{R}$$
 (2.5)

se per ogni $\varepsilon > 0$ esiste un $\delta > 0$ tale che, per ogni $x \in D$, $x \neq x_0$,

$$x_0 < x < x_0 + \delta \implies |f(x) - L| < \varepsilon$$
 (2.6)

Il limite da sinistra si definisce nello stesso modo: basterà richiedere che per tutti gli $x \in D$, soddisfacenti $x_0 - \delta < x < x_0$, si abbia $|f(x) - L| < \varepsilon$.

Esempio. Valgono i seguenti limiti: $\lim_{x\to 0^-} e^{\frac{1}{x}} = 0$; $\lim_{x\to 0^+} \frac{1}{\ln x} = 0$

Osservazione Segue subito dalle definizioni che vale $\lim_{x\to x_0} f(x) = L$ se, e solo se, il limite sinistro e il limite destro esistono entrambi, e sono entrambi uguali a L:

$$\lim_{x \to x_0} f(x) = L \quad \iff \quad \lim_{x \to x_0^-} f(x) = L = \lim_{x \to x_0^+} f(x)$$
 (2.7)

Definizione 2.4 (Limite $+\infty$ (o $-\infty$)). Sia $D \xrightarrow{f} \mathbb{R}$ una funzione reale definita su insieme $D \subset \mathbb{R}$, e sia x_0 un punto di accumulazione di D. Si dice che

$$\lim_{x \to x_0} f(x) = +\infty \qquad \left(\lim_{x \to x_0} f(x) = -\infty\right) \tag{2.8}$$

se per ogni $K \in \mathbb{R}$ esiste un $\delta > 0$ tale che, per ogni $x \in D$, $x \neq x_0$,

$$0 < |x - x_0| < \delta \implies f(x) > K \quad (rispettivamente, f(x) < K)$$
 (2.9)

Definizione 2.5 (Limiti a $+\infty$ (oppure a $-\infty$)). Sia $D \xrightarrow{f} \mathbb{R}$ una funzione reale definita su insieme $D \subset \mathbb{R}$ non limitato superiormente (rispettivamente: non limitato inferiormente). Si dice che

$$\lim_{x \to +\infty} f(x) = +\infty \qquad \left(\lim_{x \to -\infty} f(x) = +\infty\right) \tag{2.10}$$

se per ogni $K \in \mathbb{R}$ esiste un s > 0 tale che, per ogni $x \in D$,

$$x > s \ (rispettivamente, \ x < s) \implies f(x) > K$$
 (2.11)

In modo analogo, diremo che

$$\lim_{x \to +\infty} f(x) = L \qquad \left(\lim_{x \to -\infty} f(x) = L\right) \tag{2.12}$$

se per ogni $\varepsilon > 0$ esiste un r > 0 tale che per ogni $x \in D$, con x > r (rispettivamente, x < r), si abbia $|f(x) - L| < \varepsilon$.

In modo del tutto analogo (con ovvie modifiche), si definiscono altri tipi di limiti, come

$$\lim_{x \to -\infty} f(x) = -\infty \qquad \lim_{x \to x_0^-} f(x) = -\infty \tag{2.13}$$

eccetera. Se si conviene di chiamare interni $di + \infty$ le semirette del tipo $(a, +\infty)$, e interni $di - \infty$ le semirette del tipo $(-\infty, b)$, si può spiegare in modo più semplice cosa significhi che valga un certo limite. Ad esempio,

$$\lim_{x \to -\infty} f(x) = +\infty \tag{2.14}$$

significherà: per ogni intorno $W=(K,+\infty)$ di $+\infty$ esiste un intorno $U=(-\infty,b)$ di $-\infty$ tali che per ogni x nel dominio di f, con x in U, si abbia f(x) in W.

2.2 Alcuni teoremi sui limiti

Il seguente teorema è del tutto simile al teorema di unicità del limite di una successione, e si può dimostrare (con ovvi aggiustamenti formali) nello stesso modo.

2.2.1 Teorema dell'unicità del limite

Teorema 2.6. Se $D \xrightarrow{f} \mathbb{R}$ (D sottoinsieme $di \subset \mathbb{R}$) è una funzione a valori reali e x_0 è un punto di accumulazione di D, allora f può avere in x_0 al più un limite.

Dimostrazione. Supponiamo che $L', L'' \in \mathbb{R}$ siano entrambi limiti di f in x_0 . Fissiamo un qualunque numero $\varepsilon > 0$. Esiste un $\delta' > 0$ tale che, se $x \in D$ e $0 < |x - x_0| < \delta'$, allora $|f(x) - L'| < \varepsilon/2$; ed esiste anche un $\delta'' > 0$ tale che, se $x \in D$ e $0 < |x - x_0| < \delta''$, allora $|f(x) - L''| < \varepsilon/2$. Chiamiamo δ il più piccolo tra δ' e δ'' . Allora, se $x \in D$ e $0 < |x - x_0| < \delta$, la disuguaglianza triangolare implica

$$|L' - L''| = |L' - f(x) + f(x) - L''| \le |L' - f(x)| + |f(x) - L''| < \varepsilon/2 + \varepsilon/2 = \varepsilon$$
 (2.15)

Dal momento che ε è un numero positivo arbitrario, concludiamo che L' = L''.

Q.E.D.

2.2.2 Teorema del confronto

Teorema 2.7 (del confronto). Siano f(x), g(x), h(x) tre funzioni definite su uno stesso dominio D, e sia x_0 un punto di accumulazione di D. Supponiamo che si abbia

$$f(x) \le g(x) \le h(x) \tag{2.16}$$

per ogni x, appartenente a D, in un intorno bucato³ di x_0 , e supponiamo

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = L \tag{2.17}$$

Allora, anche

$$\lim_{x \to x_0} g(x) = L \tag{2.18}$$

Dimostrazione. Fissiamo un intorno $I(L;\varepsilon)=(L-\varepsilon,L+\varepsilon)$ di L, di raggio arbitrario $\varepsilon>0$. Poiché $\lim_{x\to x_0}f(x)=L$, vale la seguente condizione:

$$\exists \delta_1 > 0 \quad \forall x \quad x \in I(x_0, \delta_1) \cap D, \ x \neq x_0 \quad \Longrightarrow \quad f(x) \in I(L; \varepsilon)$$
 (2.19)

Analogamente, poiché $\lim_{x \to x_0} h(x) = L$,

$$\exists \delta_2 > 0 \quad \forall x \quad x \in I(x_0, \delta_2) \cap D, \ x \neq x_0 \quad \Longrightarrow \quad h(x) \in I(L; \varepsilon)$$
 (2.20)

Poniamo $\delta = \min\{\delta_1, \delta_2\}$. Per ogni x nell'intorno $I(x_0, \delta) = I(x_0, \delta_1) \cap I(x_0, \delta_2)$ valgono entrambe le condizioni, cioè i valori f(x) e h(x) appartengono entrambi a $I(L; \varepsilon)$:

$$L - \varepsilon < f(x) \le h(x) < L + \varepsilon$$

³Per intorno bucato di x_0 intendiamo un intorno $I(x_0;r)$ di x_0 , privato del punto x_0 .

Poiché vale sempre $f \leq g \leq h$, anche per ogni $x \in I(x_0, \delta)$ risulta

$$L - \varepsilon < f(x) \le g(x) \le h(x) < L + \varepsilon$$

e quindi anche g(x) cade nell'intorno $I(L;\varepsilon)$. Abbiamo allora dimostrato che $\lim_{x\to x_0}g(x)=L$.

Osservazione. Un'importante applicazione del teorema del confronto è la seguente:

Se $\lim_{x \to x_0} f(x) = 0$ e la funzione g(x) è limitata vicino a x_0 , allora

$$\lim_{x \to x_0} f(x)g(x) = 0 \tag{2.21}$$

Infatti: affermare che g(x) è limitata vicino a x_0 , equivale a dire che esiste una costante $K \in \mathbb{R}$ per la quale |g(x)| < K, per ogni x in un opportuno intorno I di x_0 . Allora, per ogni $x \in I$, risulta

$$0 \le |f(x)g(x)| \le |f(x)| |g(x)| \le |f(x)| K \tag{2.22}$$

Poiché $|f(x)|K \to 0$, per $x \to x_0$, per il teorema del confronto anche $\lim_{x \to x_0} f(x)g(x) = 0$.

Esempio. Si ha:

$$\lim_{x \to 0} x \sin \frac{1}{x} = 0 \tag{2.23}$$

Infatti $|\sin \frac{1}{x}| \le 1$ e quindi

$$0 \le \left| x \sin \frac{1}{x} \right| \le |x| \cdot 1 = |x| \tag{2.24}$$

Applicando il teorema del confronto, si ha la tesi.

2.2.3 Teorema di permanenza del segno

Come al solito, supponiamo che f sia una funzione reale con dominio $D \subset \mathbb{R}$, e che x_0 sia un punto di accumulazione di D. Il teorema seguente è molto semplice, ma può essere utile.

Teorema 2.8 (Permanenza del segno). Se $\lim_{x\to x_0} f(x) = L \neq 0$, allora esiste un intorno $I = I(x_0; \delta)$ tale che per ogni $x \in I$ (con $x \neq x_0$ e $x \in D$), f(x) ha lo stesso segno del limite L.

Dimostrazione. Per fissare le idee, supponiamo L > 0. Se ε è sufficientemente piccolo (per esempio, minore di L/2), l'intorno $I(L;\varepsilon) = (L-\varepsilon, L+\varepsilon)$ di L non contiene lo 0 e quindi è costituito interamente da numeri positivi. Fissato un tale ε , esiste un $\delta > 0$ tale che per ogni $x \in D$ soddisfacente $0 < |x - x_0| < \delta$, risulta $f(x) \in I(L;\varepsilon)$:

$$0 < L - \varepsilon < f(x) < L + \varepsilon$$

Dunque, per ogni x nell'intorno $I(x_0; \delta)$, f(x) si mantiene maggiore di zero.

2.2.4 Teorema sulla somma, prodotto e quoziente di limiti

Teorema 2.9 (Somma, prodotto e quoziente di limiti). Siano f(x) e g(x) due funzioni tali che

$$\lim_{x \to x_0} f(x) = L_1 \qquad \lim_{x \to x_0} g(x) = L_2 \tag{2.25}$$

Allora:

1.
$$\lim_{x \to x_0} (f(x) + g(x)) = L_1 + L_2$$

2.
$$\lim_{x \to x_0} f(x)g(x) = L_1 L_2$$

3. Se
$$L_2 \neq 0$$
, allora $\lim_{x \to x_0} f(x)/g(x) = L_1/L_2$

Dimostrazione. A titolo d'esempio, limitiamoci a dimostrare la prima uguaglianza, sul limite della somma. Fissiamo un $\varepsilon > 0$. Poiché $\lim_{x \to x_0} f(x) = L_1$, esiste un δ_1 tale che per ogni x che soddisfi $0 < |x - x_0| < \delta_1$, risulta $|f(x) - L_1| < \varepsilon$. Analogamente, poiché $\lim_{x \to x_0} g(x) = L_2$, esiste un un δ_2 tale che per ogni x, con $0 < |x - x_0| < \delta_2$, risulta $|g(x) - L_2| < \varepsilon$. Se prendiamo δ uguale al più piccolo di δ_1 e δ_2 , per $0 < |x - x_0| < \delta$ si avrà sia $|f(x) - L_1| < \varepsilon$ sia $|g(x) - L_2| < \varepsilon$. Si ha allora

$$|f(x) + g(x) - L_1 - L_2| \le |f(x) - L_1| + |g(x) - L_2| < 2\varepsilon$$

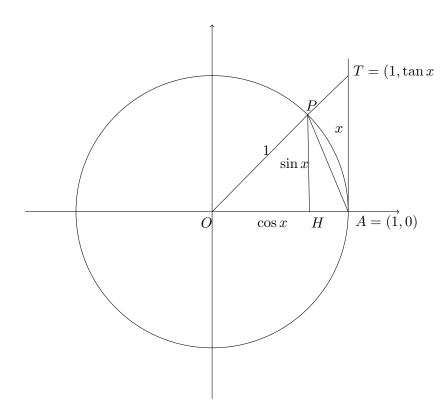
e quindi f(x) + g(x) tende a $L_1 + L_2$.

2.3 Le funzioni $\sin x$ e $\cos x$ vicino a zero

In questo paragrafo, vediamo alcuni limiti importanti in cui compaiono le funzioni seno e coseno. Denoteremo con x la misura degli archi espressa in radianti.

1. Quando $0 < |x| < \pi/2$, valgono le disuguaglianze

$$\cos x < \frac{\sin x}{x} < 1 \tag{2.26}$$



Dimostrazione. Poiché la funzione $\frac{\sin x}{x}$ è pari, cioè $\frac{\sin(-x)}{(-x)} = \frac{\sin x}{x}$, basta considerare il caso x > 0. Con riferimento alla figura, valgono le ovvie disuguaglianze:

area triangolo OAP < area settore circolare OAP < area triangolo OAT = (2.27)

che si scrivono

$$\frac{1}{2}\sin x < \frac{1}{2}x < \frac{1}{2}\tan x \tag{2.28}$$

Moltiplicando per il numero (positivo) $2/\sin x$, si ottiene

$$1 < \frac{x}{\sin x} < \frac{1}{\cos x} \tag{2.29}$$

ossia la tesi:

$$\cos x < \frac{\sin x}{x} < 1 \tag{2.30}$$

2. Dalla disuguaglianza (2.26), poiché $\cos x > -1$, si ha

$$-1 < \frac{\sin x}{x} < 1 \tag{2.31}$$

per $0 < |x| < \pi/2$. Quindi, se |x| è piccolo,

$$0 \le |\sin x| \le |x| \tag{2.32}$$

Pag. 12

e quindi, per il teorema del confronto, si ha

$$\lim_{x \to 0} \sin x = 0 \tag{2.33}$$

3. Poiché

$$0 \le 1 - \cos x = \frac{1 - \cos^2 x}{1 + \cos x} = \frac{\sin^2 x}{1 + \cos x} < \sin^2 x \tag{2.34}$$

abbiamo, per il teorema del confronto,

$$\lim_{x \to 0} 1 - \cos x = 0 \tag{2.35}$$

ossia

$$\lim_{x \to 0} \cos x = 1 \tag{2.36}$$

4. Risulta

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \tag{2.37}$$

Infatti, abbiamo visto che (per |x| piccolo e diverso da 0) valgono le disuguaglianze

$$\cos x < \frac{\sin x}{x} < 1 \tag{2.38}$$

Quando $x \to 0$, dal teorema del confronto segue allora (ricordando che $\lim_{x \to 0} \cos x = 1$)

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \tag{2.39}$$

5. Vale:

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2} \tag{2.40}$$

Infatti:

$$\frac{1 - \cos x}{x^2} = \frac{1 - \cos^2 x}{x^2 (1 + \cos x)} = \left(\frac{\sin x}{x}\right)^2 \frac{1}{1 + \cos x} \tag{2.41}$$

Quando $x \to 0$, il termine $\frac{\sin x}{x}$ tende a 1, mentre $\frac{1}{1 + \cos x}$ tende a 1/2. Quindi,

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \lim_{x \to 0} \left(\frac{\sin x}{x}\right)^2 \frac{1}{1 + \cos x} = \frac{1}{2}$$
 (2.42)

2.4 Simbolo di o-piccolo

Siano f(x) e g(x) funzioni definite in un intorno bucato U di x_0 e diverse da zero in ogni punto (diverso da x_0) di tale intorno.

Definizione 2.10. Si dice che f(x) è o-piccolo di g(x) per $x \to x_0$, e si scrive

$$f(x) = o(g(x)), per x \to x_0$$
(2.43)

se

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0 \tag{2.44}$$

In questa definizione, x_0 può anche essere $+\infty$ o $-\infty$.

Questa definizione può essere utile quando vogliamo confrontare tra loro due funzioni f e g che tendano entrambe a zero, oppure due funzioni f e g che tendano entrambe $a + \infty$ (o a $-\infty$). (Se, invece, per $x \to x_0$, f tende 0 e g tende a $+\infty$, il fatto che f sia o(g) è vero, ma privo di interesse.)

Se f(x) è o(g(x)), per $x \to x_0$, diremo anche che f(x) è trascurabile rispetto a g(x), per $x \to +\infty$.

Se f(x) e g(x) tendono entrambe a zero, per $x \to x_0$, e f(x) è o(g(x)), diremo che f(x) è un infinitesimo di ordine superiore rispetto a g(x).

Se f(x) e g(x) tendono entrambe a $+\infty$, per $x \to x_0$, e f(x) è o(g(x)), diremo che f(x) è un infinito di ordine inferiore rispetto a g(x).

Esempi.

1)
$$x^2 \ ensuremath{\mbox{\'e}} \ o(x)$$
, per $x \to 0$. Infatti, $\lim_{x \to 0} \frac{x^2}{x} = \lim_{x \to 0} x = 0$.

2) $1 - \cos x \ e^{-\alpha}$ o(x), per $x \to 0$, perché

$$\lim_{x \to 0} \frac{1 - \cos x}{x} = \lim_{x \to 0} \frac{(1 - \cos x)(1 + \cos x)}{x(1 + \cos x)} = \lim_{x \to 0} \frac{\sin^2 x}{x(1 + \cos x)} = 0$$

3)
$$\ln x \in o(x)$$
, per $x \to +\infty$. Infatti, $\lim_{x \to +\infty} \frac{\ln x}{x} = 0$.

4) Per definizione, affermare che una funzione f(x) è o(1) per $x \to x_0$ significa che $\lim_{x\to 0} f(x)/1 = \lim_{x\to 0} f(x) = 0$. Dunque, per una funzione f(x), la proprietà di essere un o(1), per $x\to x_0$, equivale alla proprietà di essere infinitesima (ossia di tendere a 0) per $x\to x_0$.

2.5 Relazione \sim di equivalenza asintotica

Introduciamo ora la relazione di equivalenza asintotica di due funzioni in x_0 (dove x_0 può anche denotare $+\infty$ o $-\infty$). Consideriamo soltanto funzioni f(x) che, in un opportuno intorno bucato di x_0 , non si annullino mai (così possiamo dividere per f(x) senza problemi).

Facciamo una premessa. Supponiamo che valga:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$$

Questo equivale a dire che, per x tendente a x_0 ,

$$\frac{f(x)}{g(x)} - 1 = o(1)$$

(cioè, f(x)/g(x)-1 tende a zero, per $x\to x_0$). A sua volta, f(x)/g(x)-1=o(1) equivale (moltiplicando per g(x)) a

$$f(x) = g(x) + g(x) \cdot o(1)$$
 $x \to x_0$ (2.45)

o, in modo equivalente,

$$f(x) = g(x) + o(g(x)) \qquad x \to x_0$$
 (2.46)

Definizione 2.11. Si dice che la funzione f(x) è asintotica – o asintoticamente equivalente – alla funzione g(x) per $x \to x_0$ (o in x_0), e si scrive

$$f(x) \sim g(x), \quad x \to x_0 \tag{2.47}$$

se

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1 \tag{2.48}$$

In modo equivalente, $f(x) \sim g(x), x \rightarrow x_0$ se

$$f(x) = g(x) + g(x) \cdot o(1)$$
 $x \to x_0$ (2.49)

o, sempre in modo equivalente, $f(x) \sim g(x), x \rightarrow x_0$ se

$$f(x) = g(x) + o(g(x)) \qquad x \to x_0$$
 (2.50)

Si ricordi che in questa definizione, x_0 può anche essere $+\infty$ o $-\infty$.

Si noti che la scrittura " $f(x) \sim g(x)$ " è priva di significato. Infatti, si deve sempre specificare: $f(x) \sim g(x)$, per $x \to x_0$.

Esempi.

1) Si ha:

$$\sin x \sim x, \quad x \to 0 \tag{2.51}$$

Infatti, abbiamo visto che $\lim_{x\to 0} \frac{\sin x}{x} = 1.$

2) Si ha:

$$1 - \cos x \sim \frac{1}{2}x^2, \quad x \to 0$$
 (2.52)

Segue subito da: $\lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{1}{2}$.

3) Vale la relazione:

$$x^3 + x^2 + x \sim x^3, \quad x \to +\infty$$
 (2.53)

Infatti,

$$\frac{x^3 + x^2 + x}{x^3} = 1 + \frac{1}{x} + \frac{1}{x^2}$$

tende a 1, per $x \to +\infty$.

3 Asintoti

3.1 Definizioni

Definizione 3.1 (Asintoto verticale). La retta $x = x_0$ si chiama asintoto verticale del grafico della funzione f, se è soddisfatta una delle seguenti condizioni:

$$\lim_{x \to x_0^+} f(x) = +\infty (oppure - \infty)$$

$$\lim_{x \to x_0^-} f(x) = +\infty (oppure - \infty)$$

Definizione 3.2 (Asintoto orizzontale). La retta y = L si dice asintoto orizzontale del grafico della funzione f, per $x \to +\infty$, se è soddisfatta la condizione:

$$\lim_{x \to +\infty} f(x) = L \tag{3.1}$$

Analogamente, la retta y=K si dice asintoto orizzontale per la funzione f, per $x\to -\infty$, se

$$\lim_{x \to -\infty} f(x) = K \tag{3.2}$$

Definizione 3.3 (Asintoto obliquo). La retta $y = mx + q \ (m \neq 0)$ si dice asintoto obliquo del grafico della funzione y = f(x), per $x \to +\infty$, se

$$\lim_{x \to +\infty} (f(x) - mx - q) = 0, \tag{3.3}$$

ossia, in modo equivalente, se

$$f(x) = mx + q + o(1), \quad per \, x \to +\infty \tag{3.4}$$

(dove o(1) designa una funzione infinitesima per $x \to +\infty$).

In modo analogo si definisce un asintoto obliquo per f, per $x \to -\infty$.

La condizione (3.3) – e la condizione equivalente (3.4) – dicono che la differenza tra l'ordinata del punto (x, f(x)) sul grafico di f e l'ordinata del punto (x, mx + q) (con la stessa ascissa) sulla retta y = mx + q, tende a zero, per $x \to +\infty$.

3.2 Regola per trovare gli asintoti obliqui

Data una funzione, cerchiamo un metodo per trovarne un asintoto obliquo, nel caso che esso esista. Supponiamo allora che un asintoto a $+\infty$ esista, e sia la retta di equazione y = mx + q, con $m \neq 0$. Supponiamo dunque (si veda la definizione (3.4) di asintoto obliquo) che

$$f(x) = mx + q + o(1), \quad \text{per } x \to +\infty$$
 (3.5)

dove o(1) denota una funzione infinitesima per $x \to +\infty$. Allora il coefficiente angolare m e il numero q si possono trovare nel modo seguente:

$$m = \lim_{x \to +\infty} \frac{f(x)}{x} \qquad (m \neq 0), \qquad q = \lim_{x \to +\infty} (f(x) - mx)$$
 (3.6)

Infatti, da (3.5) segue: $\frac{f(x)}{x} = m + \frac{q}{x} + \frac{o(1)}{x}$. Ora, per $x \to +\infty$, è ovvio che $\frac{q}{x} \to 0$; anche $\frac{o(1)}{x} \to 0$, perché il numeratore tende a 0 e il denominatore a $+\infty$. Quindi, f(x)/x tende a m, per $x \to +\infty$. La seonda uguaglianza $q = \lim_{x \to +\infty} (f(x) - mx)$ è poi un'ovvia consguenza dell'uguaglianza (3.5).

Queste osservazioni servono per motivare la seguente regola.

Regola per trovare l'asintoto obliquo. Sia f(x) una funzione definita in un intorno di $+\infty$, ossia su una semiretta del tipo $(a, +\infty)$. Supponiamo che valgano *entrambe* le condizioni seguenti:

a) Esiste finito, ed è un numero diverso da zero, il limite:

$$\lim_{x \to +\infty} \frac{f(x)}{r} = m, \quad m \neq 0 \tag{3.7}$$

b) Esiste finito il limite

$$\lim_{x \to +\infty} (f(x) - mx) = q \tag{3.8}$$

Allora la retta y = mx + q è asintoto obliquo per la funzione y = f(x), per $x \to +\infty$.

Dimostrazione (della regola per l'asintoto obliquo). Infatti, l'esistenza del limite (3.8), con $m \neq 0$ e $q \in \mathbb{R}$, equivale a dire che

$$\lim_{x \to +\infty} (f(x) - mx - q) = 0 \qquad (m \neq 0)$$

Quindi, per la definizione 3.3 di asintoto, la retta y=mx+q è asintoto obliquo di f a $+\infty$.

Esempio. Sia $f(x) = x + \frac{\sin x}{x}$.

Pag. 17

Per $x \to +\infty$, la funzione $\frac{\sin x}{x}$ è o(1) (è infinitesima):

$$f(x) = x + o(1)$$

Dunque, per la definizione di asintoto, possiamo concludere che la retta y=x è asintoto obliquo per f(x), per $x \to +\infty$.

Si noti che il grafico di f(x) non si avvicina alla retta y=x sempre da sopra, né sempre da sotto, ma oscillando e intersecando l'asintoto infinite volte.

Attenzione. Si osservi che l'esistenza del limite (3.7) equivale a dire che $f(x) \sim mx$, $m \neq 0$, (f(x)) è asintotica a mx, per $x \to +\infty$. Ma questa condizione, da sola, non è sufficiente per concludere che f abbia un asintoto a $+\infty$: occorre anche la condizione (3.8), come mostra il seguente esempio.

Esemplo. $x + \ln x \sim x$ $(x + \ln x)$ è asintotico a x, per $x \to +\infty$. Infatti,

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{x + \ln x}{x} = 1$$

Quindi, se esiste un asintoto a $+\infty$, il suo coefficiente angolare deve essere m=1. Ma

$$f(x) - x = \ln x$$

non ha limite finito per $x \to +\infty$. Dunque, non esiste alcun asintoto obliquo.

4 Alcuni limiti notevoli

1. Ricordiamo che la costante e di Napier (o numero di Eulero) si definisce come il limite della successione $(1+\frac{1}{n})^n$, che è convergente in $\mathbb R$ in quanto è crescente e superiormente limitata. Ciò premesso, risulta (ne omettiamo la dimostrazione)

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x = e \tag{4.1}$$

$$\lim_{x \to -\infty} \left(1 + \frac{1}{x} \right)^x = e \tag{4.2}$$

2. Dai precedenti limiti, segue subito:

$$\lim_{x \to 0} (1+x)^{\frac{1}{x}} = e \tag{4.3}$$

(Quest'ultimo limite si ricava subito dai limiti (4.1) (4.2) con la sostituzione x = 1/t).

3. Per ogni $\alpha \in \mathbb{R}$,

$$\lim_{x \to +\infty} \left(1 + \frac{\alpha}{x} \right)^x = e^{\alpha} \tag{4.4}$$

Infatti,
$$\left(1 + \frac{\alpha}{x}\right)^x = \left[\left(1 + \frac{1}{x/\alpha}\right)^{x/\alpha}\right]^{\alpha}$$
, che tende a e^{α} per $x \to +\infty$.

4. Per ogni a > 0 e per ogni base b > 0, $(b \neq 1)$,

$$\lim_{x \to 0^+} x^a \log_b x = 0 \tag{4.5}$$

(Questo limite si presenta come una forma di indeterminazione $0 \cdot \infty$. Si noti che lo stesso limite (4.5) continua a valere 0 anche nel caso a < 0, ma in tale caso non è più una forma di indeterminazione). Dimostreremo la validità del limite (4.5) più avanti, mediante il teorema di De L'Hospital.

$$\lim_{x \to 0^+} x^x = 1 \tag{4.6}$$

Infatti, basta scrivere $x^x = e^{x \ln x}$ e osservare che l'esponente $x \ln x$ tende a 0 per $x \to 0^+$.

6. Ricordiamo come si comportano all'infinito le funzioni esponenziali a^x :

$$\lim_{x \to +\infty} a^x = \begin{cases} 0 & \text{se } 0 < a < 1\\ 1 & \text{se } a = 1\\ +\infty & \text{se } a > 1 \end{cases}$$

$$(4.7)$$

7. Per ogni $\beta > 0$,

$$\lim_{x \to +\infty} \frac{x^{\beta}}{e^x} = 0 \tag{4.8}$$

Dunque x^{β} è un infinito di ordine inferiore rispetto a e^x , per $x \to +\infty$. (Dimostrazione più avanti, con il teorema di De L'Hospital).

8. Più in generale, per ogni $\beta > 0$ e per ogni base a > 1,

$$\lim_{x \to +\infty} \frac{x^{\beta}}{a^x} = 0 \tag{4.9}$$

9. Per ogni $\alpha > 0$, $\beta > 0$,

$$\lim_{x \to +\infty} \frac{(\ln x)^{\alpha}}{x^{\beta}} = 0 \tag{4.10}$$

Dunque $\ln x$ (o una sua qualunque potenza $(\ln x)^{\alpha}$, $\alpha > 0$) è un infinito di ordine inferiore rispetto a x (o a una sua qualunque potenza x^{β}), quando $x \to +\infty$. Per dimostrare che vale il limite (4.10), basta operare la sostituzione $\ln x = t$ e utilizzare il limite (4.9)

5 Funzioni reali continue

5.1 Definizione di funzioni continua

Il concetto intuitivo di continuità di una funzione f in un punto x_0 , appartenente al suo dominio, è questo:

Dire che una funzione f è continua nel punto x_0 - appartenente al dominio di f - significa che la distanza tra f(x) e $f(x_0)$ si può rendere arbitrariamente piccola (cioè piccola quanto si vuole), pur di prendere sufficientemente piccola la distanza tra x e x_0 .

Ecco un modo per dare una forma matematica precisa a questo concetto intuitivo.

Definizione 5.1 (Funzione continua in un punto; funzione continua). Una funzione $D \xrightarrow{f} \mathbb{R}$, D sottoinsieme $di \mathbb{R}$, si dice continua nel punto x_0 appartenente al suo dominio D, se per ogni numero $\varepsilon > 0$ esiste un numero $\delta > 0$ tale che per ogni x in D soddisfacente la condizione $|x - x_0| < \delta$, si ha $|f(x) - f(x_0)| < \varepsilon$. Con un linguaggio più formalizzato: $D \xrightarrow{f} \mathbb{R}$ si dice continua in $x_0 \in D$ se:

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x \in D \qquad [|x - x_0| < \delta \Longrightarrow |f(x) - f(x_0)| < \varepsilon]$$
 (5.1)

Una funzione $D \xrightarrow{f} \mathbb{R}$ si dice continua sul suo dominio D - o continua - se è continua in ogni punto del suo dominio:

$$\forall x_0 \in D \quad \forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x \in D \qquad [|x - x_0| < \delta \Longrightarrow |f(x) - f(x_0)| < \varepsilon] \quad (5.2)$$

Il caso più significativo è quello di un punto x_0 che appartenga al dominio D di f e sia punto di accumulazione di D. (Ricordiamo che questo significa che ogni intorno $(x_0 - r, x_0 + r)$, r > 0, contiene infiniti punti del dominio D di f). In questo caso, la definizione di continuità si può parafrasare nel modo seguente:

La funzione $D \xrightarrow{f} \mathbb{R}$ è continua in $x_0 \in D$, x_0 punto di accumulazione di D, se il limite di f per $x \to x_0$ esiste finito (ossia è un numero reale) e inoltre si ha

$$\lim_{x \to x_0} f(x) = f(x_0) \tag{5.3}$$

Se invece il punto $x_0 \in D$ è un punto *isolato* di D (cioè non è punto di accumulazione per D), secondo la definizione che abbiamo dato, f è continua in x_0 . (Perché?). Ma questo caso non avrà, nel seguito, molta importanza.

Osservazione Insistiamo sul fatto che se $D \xrightarrow{f} \mathbb{R}$ è una funzione (D sottoinsieme di \mathbb{R}), f è continua nel punto x_0 se x_0 appartiene al dominio D di f, il limite di f per $x \to_0$ esiste finito e

$$\lim_{x \to x_0} f(x) = f(x_0) \tag{5.4}$$

Invece diciamo che f non è continua in x_0 se x_0 appartiene al dominio D di f e il limite di f per $x \to x_0$ non esiste, oppure esiste ma non è finito (è $+\infty$ o $-\infty$), oppure esiste finito ma è diverso dal valore $f(x_0)$. Se invece un punto p non appartiene al dominio D di una funzione f, è scorretto affermare che f è discontinua in p. Ad esempio, consideriamo la funzione $(-\infty,0) \cup (0,+\infty) \xrightarrow{f} \mathbb{R}$, f(x)=1/x. È improprio dire che f è discontinua in $x_0=0$, perché in realtà 0 non appartiene al dominio di f.

Tenendo presente la definizione di limite in termini di intorni, possiamo parafrasare, in modo equivalente, la continuità di f in $x_0 \in D$ anche nel modo seguente.

Definizione 5.2 (Continuità in termini di intorni). La funzione $D \xrightarrow{f} \mathbb{R}$ si dice continua nel punto x_0 , appartenente al suo dominio D, se soddisfa la proprietà seguente:

Per ogni intorno W di $f(x_0)$ esiste un intorno U di x_0 tale che

$$f(U) \subset W \tag{5.5}$$

Esercizio 5.3. Ogni funzione costante è continua. (Una funzione $\mathbb{R} \stackrel{f}{\longrightarrow} \mathbb{R}$ è si dice costante se esiste un numero k tale che, per ogni x, f(x) = k).

Esercizio 5.4. La funzione identità $\mathbb{R} \xrightarrow{I} \mathbb{R}$ (per ogni x, I(x) = x) è continua.

Esercizio 5.5. La funzione "reciproco" $\mathbb{R} \setminus \{0\} \longrightarrow \mathbb{R}$, che manda ogni $x \neq 0$ in 1/x, è continua.

5.2 Prime proprietà delle funzioni continue

Vediamo ora le prime proprietà delle funzioni continue. Prendiamo in considerazione funzioni che sono definite su un sottoinsieme $D \subset \mathbb{R}$ e il cui codominio sia \mathbb{R} .

Teorema 5.6 (Permanenza del segno). Sia $D \xrightarrow{f} \mathbb{R}$ una funzione continua nel punto $x_0 \in X$ e positiva in x_0 :

$$f(x_0) > 0$$

Allora esiste un intorno $U \subset D$ di x_0 in cui la funzione f si mantiene positiva:

$$\forall x \in U \qquad f(x) > 0$$

Ovviamente, un enunciato analogo vale nell'ipotesi $f(x_0) < 0$. In questo caso, la funzione continua f(x) si manterrà negativa in tutto un intervallo centrato in x_0 .

Dimostrazione. Poiché $f(x_0)$ è positivo, ogni intorno sufficientemente piccolo di $f(x_0)$ contiene solo numeri positivi. Ad esempio, fissato un qualunque numero positivo $\varepsilon < f(x_0)$, l'intorno aperto $W = (f(x_0) - \varepsilon, f(x_0) + \varepsilon)$ di $f(x_0)$ contiene soltanto numeri positivi. Fissato uno di tali intorni W, poiché f è continua in x_0 , esiste un intorno U di x_0 tale che $f(U) \subset W$. Siccome in W ci sono solo numeri positivi, si ha f(x) > 0, per ogni $x \in U$. Q.E.D.

Valgono anche i seguenti teoremi, che si dimostrano facilmente ricorrendo agli analoghi teoremi sui limiti.

Teorema 5.7 (Somma di funzioni continue). La somma di due funzioni reali di variabile reale, entrambe continue in x_0 , è continua in x_0 .

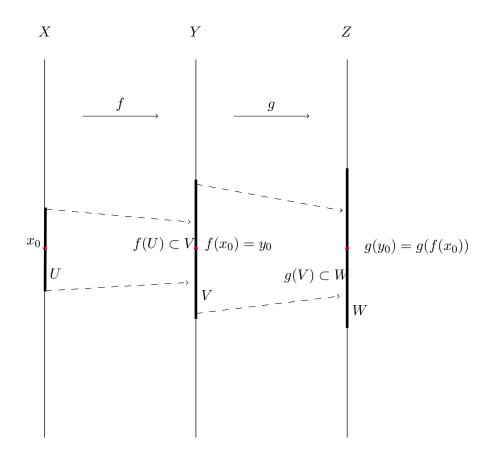
Teorema 5.8 (Prodotto di funzioni continue). Il prodotto di due funzioni reali di variabile reale, entrambe continue in x_0 , è continua in x_0 .

Teorema 5.9 (Quoziente di funzioni continue). Siano f(x) e g(x) due funzioni continue a valori reali, con $g(x) \neq 0$ per ogni x. Allora anche il quoziente $\frac{f(x)}{g(x)}$ è una funzione continua.

5.3 Composizione di funzioni continue

Teorema 5.10 (Composizione di funzioni continue). Se due funzioni sono continue e si possono comporre, la funzione composta è continua.

Dimostrazione. Siano $X \xrightarrow{f} Y \xrightarrow{g} Z$ due funzioni continue, X, Y, Z sottoinsiemi di \mathbb{R} , e sia $X \xrightarrow{g \circ f} Z$ la funzione composta: Sia x_0 un punto di X. Poniamo $f(x_0) = y_0$. Sia W un qualunque intorno di $g(f(x_0)) = g(y_0)$.



Per la continuità di g in y_0 , esiste un intorno V di y_0 tale che $g(V) \subset W$. Del resto, poiché f è continua in x_0 , esiste un intorno U di x_0 per il quale $f(U) \subset V$. Poiché da $f(U) \subset V$ segue $g(f(U)) \subset g(V)$, si ha

$$(g \circ f)(U) = g(f(U)) \subset g(V) \subset W$$

Questo prova la continuità della funzione composta in x_0 . Poiché x_0 è un punto arbitario di X, abbiamo dimostrato la continuità della funzione composta $g \circ f$. Q.E.D.

Esempio. Siano $\mathbb{R}_{>0} \xrightarrow{f} \mathbb{R}$ e $\mathbb{R} \xrightarrow{g} \mathbb{R}$, dove $f(x) = \ln x$, $x \in \mathbb{R}_{>0}$, e $g(y) = \arctan y$,

 $y \in \mathbb{R}$. Poiché f e g sono continue e la funzione composta $g \circ f$ è definita, anche $g \circ f$ è continua. Dunque la funzione arctan($\ln x$), $x \in \mathbb{R}_{>0}$, è continua.

5.4 Le funzioni continue preservano i limiti di successioni

Le funzioni continue possono essere caratterizzate in termini di successioni convergenti:

Teorema 5.11 (Continuità per successioni). Siano $D \subset \mathbb{R}$, $D \xrightarrow{f} \mathbb{R}$ una funzione, x_0 un punto di D. I due sequenti enunciati sono equivalenti:

- (1) $f \ \dot{e} \ continua \ in \ x_0$.
- (2) Per ogni successione (x_n) in D,

$$x_n \xrightarrow[n \to +\infty]{} x_0 \Longrightarrow f(x_n) \xrightarrow[n \to +\infty]{} f(x_0)$$

cioè: se $\lim_{n\to+\infty} x_n = x_0$, allora $\lim_{n\to+\infty} f(x_n) = f(x_0)$.

In breve: Le funzioni continue sono le funzioni che preservano i limiti di successioni.

Dimostrazione.

$$(1) \Longrightarrow (2)$$

 $(2) \Longrightarrow (1)$

Dimostriamo che la successione $f(x_n)$ converge a $f(x_0)$. Fissiamo $\varepsilon > 0$. Per la continuità di f in x_0 , esiste un $\delta > 0$ tale che, per ogni $x \in D$ soddisfacente $|x - x_0| < \delta$, si ha $|f(x) - f(x_0)| < \varepsilon$. Ma per n sufficientemente grande, tutti gli elementi x_n appartengono all'intervallo $(x_0 - \delta, x_0 + \delta)$ (perché $\lim_{n \to +\infty} x_n = x_0$). Pertanto, per tutti gli n sufficientemente grandi, si ha $|f(x_n) - f(x_0)| < \varepsilon$. Questo dimostra che $\lim_{n \to +\infty} f(x_n) = f(x_0)$.

Supponiamo, per assurdo, che f non sia continua in x_0 . Affermare che f non è continua in x_0 significa che esiste un numero positivo ε tale che, per ogni $\delta > 0$ esiste un punto $x \in D$ tale che $|x - x_0| < \delta$ e $|f(x) - f(x_0)| > \varepsilon$. Poniamo allora $\delta_n = 1/n$, $n \in \mathbb{N}$. Allora, per ogni δ_n esiste un punto x_n tale che

$$|x_n - x_0| < 1/n$$
 e $|f(x_n) - f(x_0)| > \varepsilon$

Dunque la successione x_n converge a x_0 (per la Proprietà di Archimede), ma la successione $f(x_n)$ non converge a $f(x_0)$. Questo fatto contraddice l'ipotesi (2). Q.E.D.

Il teorema 5.11 che caratterizza la continuità in termini di successioni può essere utilizzato come

Criterio per stabilire la discontinuità di una funzione. Siano $D \subset \mathbb{R}$, $D \xrightarrow{f} \mathbb{R}$ una funzione, x_0 un punto di D. Se esiste una successione (x_n) tale che $x_n \to x_0$ ma $f(x_n) \not\to f(x_0)$, allora f non è continua in x_0 .

Esempio. Si consideri la funzione

$$f(x) = \begin{cases} 0 & \text{per } x \text{ irrazionale} \\ 1 & \text{per } x \text{ razionale} \end{cases}$$
 (5.6)

Dico che f è discontinua in ogni punto. Infatti, fissiamo un qualunque x_0 irrazionale. Siccome \mathbb{Q} è denso in \mathbb{R} , esiste una successione x_n di razionali tale che $x_n \to x_0$. Ma $f(x_n) \not\to f(x_0)$, perché $f(x_n) = 0$ e $f(x_0) = 1$. Pertanto, per il teorema 5.11, f non è continua nel numero irrazionale x_0 . In modo analogo (usando il fatto che gli irrazionali sono densi in \mathbb{R}) si dimostra che f è discontinua anche in ogni numero razionale.

Pag. 25

6 Proprietà delle funzioni reali continue su un intervallo

6.1 Intervalli

La struttura d'ordine di \mathbb{R} permette di individuare una famiglia particolarmente importante di sottoinsiemi di \mathbb{R} , detti *intervalli*.

Definizione 6.1 (Intervallo). Gli intervalli (non vuoti) di \mathbb{R} sono esattamente i sottoinsiemi di \mathbb{R} di uno dei seguenti tipi⁴, dove a,b sono numeri reali e $a \leq b$:

- 1. $(a,b) = \{x \in \mathbb{R} \mid a < x < b\}$ (Intervallo aperto e limitato);
- 2. $[a,b) = \{x \in \mathbb{R} \mid a \le x < b\}$ (Intervallo limitato, né aperto, né chiuso);
- 3. $(a,b] = \{x \in \mathbb{R} \mid a < x \leq b\}$ (Intervallo limitato, né aperto, né chiuso);
- 4. $[a,b] = \{x \in \mathbb{R} \mid a \leq x \leq b\}$, (intervallo chiuso e limitato, o intervallo compatto; si riduce a un unico punto, se a = b);
- 5. $(-\infty, b) = \{x \in \mathbb{R} \mid x < b\}$, (semiretta aperta);
- 6. $(-\infty, b] = \{x \in \mathbb{R} \mid x \leq b\}$, (semiretta chiusa);
- 7. $(a, \infty) = \{x \in \mathbb{R} \mid a < x\}$, (semiretta aperta);
- 8. $[a, \infty) = \{x \in \mathbb{R} \mid a \leq x\}, (semiretta\ chiusa);$
- 9. L'intera retta reale \mathbb{R} . (Intervallo sia aperto sia chiuso).

Può essere utile dire che anche l'insieme vuoto è un intervallo.

Usando la proprietà di completezza di \mathbb{R} , si dimostra senza difficoltà questa caratterizzazione degli intervalli di \mathbb{R} :

Teorema 6.2 (Caratterizzazione degli intervalli). Un sottoinsieme non vuoto I di \mathbb{R} è un intervallo di \mathbb{R} se, e solo se, contiene un solo punto (intervallo 'degenere'), oppure se soddisfa la proprietà sequente:

Se x, y, con x < y, sono due punti qualunque appartenenti a I e $w \in \mathbb{R}$ è un qualunque punto compreso tra x e y (cio è soddisfacente x < w < y), allora anche w appartiene a I.

In altri termini, la proprietà di convessità degli intervalli si puøesprimere nel modo seguente:

Proprietà di convessità Un sottoinsieme $J \subseteq \mathbb{R}$ è un intervallo di \mathbb{R} se, e solo se, per ogni u, v, se $u \in J$ e $v \in J$, allora tutto il segmento [u, v] (costituito da tutti i punti x soddisfacenti $u \le x \le v$) è incluso in J.

Puøessere utile dire che anche l'insieme vuoto è un intervallo. Si noti che: L'intersezione di due intervalli è un intervallo. [Esercizio].

⁴Si ricordino le definizioni di insieme aperto, di insieme chiuso, di insieme limitato: un insieme $A \subset \mathbb{R}$ si dice aperto in \mathbb{R} , se per ogni $x \in A$ esiste un intorno I(x;r), r > 0, tutto incluso in A; un insieme B si dice chiuso in \mathbb{R} se il suo complementare $\mathbb{R} \setminus B$ è aperto in \mathbb{R} ; un insieme S si dice limitato se esiste un numero K tale che che per ogni $x \in S$ si abbia |x| < K.

6.2 Il teorema degli zeri per le funzioni continue

Teorema 6.3 (Teorema degli Zeri). Sia $I \xrightarrow{f} \mathbb{R}$ una funzione definita su un intervallo I di \mathbb{R} e continua. Siano a,b due punti appartenenti a I, con a < b. Supponiamo che i valori f(a) e f(b) abbiano segni opposti. (Vale a dire, f(a) < 0 e f(b) > 0, o viceversa). Allora esiste almeno un punto $\alpha \in (a,b)$ in cui si ha $f(\alpha) = 0$.

Dimostrazione. La dimostrazione del teorema degli zeri consiste nel presentare un algoritmo (detto **metodo di bisezione** o metodo dicotomico) per mezzo del quale è possibile trovare un punto in cui f si annulla.

Per fissare le idee supponiamo f(a) < 0 e f(b) > 0 e consideriamo il punto medio $c = \frac{a+b}{2}$ dell'intervallo [a,b]. Possono presentarsi due casi. Se f(c) = 0 il problema è risolto (abbiamo trovato uno zero di f). Se invece $f(c) \neq 0$, scegliamo tra i due intervalli [a,c] e [c,b] quello in cui la funzione f assume valori discordi agli estremi. Tenuto conto delle nostre scelte iniziali (f(a) < 0 e f(b) > 0), si tratta di scegliere l'intervallo in cui la funzione assume valore negativo nell'estremo di sinistra e valore positivo nell'estremo di destra. Quindi se $f(c) \neq 0$, scegliamo l'intervallo $I_1 = [i_1, j_1]$ nel modo seguente :

$$I_1 = [i_1, j_1] = \begin{cases} [a, c] & se \quad f(c) > 0 \\ [c, b] & se \quad f(c) < 0 \end{cases}$$
 (6.1)

Operiamo ora sull'intervallo $I_1 = [i_1, j_1]$ nello stesso modo in cui abbiamo operato sull'intervallo [a, b]. Precisamente: sia c_1 il punto medio di $[i_1, j_1]$. Se $f(c_1) = 0$ il problema è risolto $(c_1$ è uno zero di f). Altrimenti scegliamo tra i due intervalli $[i_1, c_1]$ e $[c_1, j_1]$ quello in cui la funzione assume valore negativo nell'estremo di sinistra e positivo nell'estremo di destra.

Iterando questo procedimento, si possono avere due casi:

- 1. Esiste un intero positivo k tale che la funzione si annulla nel punto medio c_k dell'intervallo $[i_k, j_k]$. In questo caso abbiamo trovato un punto c_k nel quale la funzione f si annulla, e la tesi del teorema è dimostrata.
- 2. La funzione non si annulla in nessun punto medio c_k . In questo caso otteniamo una successione infinita di intervalli compatti inscatolati

$$[i_1,j_1]\supset [i_2,j_2]\supset [i_3,j_3]\supset\cdots\supset [i_n,j_n]\supset\cdots$$

con le due seguenti proprietà:

- nell'estremo di sinistra di ogni intervallo la funzione assume valore negativo, mentre nell'estremo di destra assume valore positivo, cio è per ogni k $(0 \le k \le n)$ abbiamo $f(i_k) < 0$ e $f(j_k) > 0$.
 - gli intervalli hanno ampiezza $j_k i_k = \frac{b-a}{2^k}$

Abbiamo dunque costruito una successione di intervalli compatti inscatolati le cui ampiezze tendono a zero. Per il teorema sugli intervalli inscatolati (conseguenza della completezza di \mathbb{R}) esiste un unico numero reale α che appartiene a tutti gli intervallini $[i_n, j_n]$, per ogni $n \in \mathbb{N}$. A tale numero α convergono le due successioni i_n e j_n :

$$\lim_{n \to +\infty} i_n = \alpha = \lim_{n \to +\infty} j_n$$

Poiché f è continua in $x = \alpha$, per il teorema 5.11 (le funzioni continue preservano i limiti)

$$\lim_{n \to +\infty} f(i_n) = f\left(\lim_{n \to +\infty} i_n\right) = f(\alpha) \qquad \text{e} \qquad \lim_{n \to +\infty} f(j_n) = f\left(\lim_{n \to +\infty} j_n\right) = f(\alpha)$$

Poiché $f(i_n) < 0$ per ogni n, si deve avere

$$f(\alpha) = \lim_{n \to +\infty} f(i_n) \le 0$$

Analogamente, poiché $f(j_n) > 0$ per ogni n, si deve avere

$$f(\alpha) = \lim_{n \to +\infty} f(j_n) \ge 0$$

Poichè le due ultime disuguaglianze devono valere contemporaneamente, abbiamo $f(\alpha) = 0$ e quindi α è uno zero di f. Q.E.D.

6.3 Teorema dei valori intermedi

Teorema 6.4 (Teorema dei valori intermedi). Sia I un intervallo di \mathbb{R} e sia $I \xrightarrow{f} \mathbb{R}$ una funzione continua. Se a e b appartengono a I, la funzione f assume ogni valore compreso tra f(a) e f(b).

Teorema 6.5 (L'immagine continua di un intervallo è un intervallo). Sia I un intervallo di \mathbb{R} e sia $I \xrightarrow{f} \mathbb{R}$ una funzione continua. Allora l'immagine J = f(I) di f è un intervallo.

In breve: Le funzioni continue da \mathbb{R} a \mathbb{R} trasformano intervalli in intervalli.

Questo teorema generalizza il Teorema degli Zeri 6.3.

Dimostrazione. Siano a' = f(a) e b' = f(b) due punti di f(I); supponiamo a' < b'. Sia w un numero tale che a' < w < b'. Dobbiamo dimostrare che $w \in f(I)$. Consideriamo la funzione g(x) = f(x) - w. Tale funzione è ovviamente continua sull'intervallo [a, b] e si ha:

$$g(a) = f(a) - w = a' - w < 0 g(b) = f(b) - w = b' - w > 0 (6.2)$$

Dunque la funzione g soddisfa le ipotesi del Teorema degli Zeri 6.3 sull'intervallo [a, b]. Allora esiste un punto $c \in (a, b)$ per il quale g(c) = f(c) - w = 0, ossia f(c) = w, come si voleva dimostrare. Q.E.D.

6.3.1 Proprietà di Darboux. (Argomento facoltativo)

Se $I \subset \mathbb{R}$ è un intervallo, diciamo che una funzione $I \xrightarrow{f} \mathbb{R}$ gode della *Proprietà dei Valori Intermedi* – detta anche *Proprietà di Darboux* – se per ogni coppia di punti a, b in I, a < b, se w è un qualunque punto tra f(a) e f(b), allora esiste c tra a e b per il quale f(c) = w.

Noi abbiamo dimostrato che ogni funzione $I \xrightarrow{g} \mathbb{R}$ continua su un intervallo I di \mathbb{R} , gode della *Proprietà dei Valori Intermedi* (di Darboux).

Ma la *Proprietà dei Valori Intermedi* non implica la continuità, cio è esistono funzioni che godono della *Proprietà dei Valori Intermedi*, ma non sono continue. Dunque, la *Proprietà dei Valori Intermedi* è più debole della continuità .

Un controesempio è fornito dalla funzione

$$f(x) = \begin{cases} \sin\frac{1}{x} & x \neq 0\\ 0 & x = 0 \end{cases}$$
 (6.3)

Infatti questa funzione, definita su tutto \mathbb{R} , non è continua in 0 (comunque si definisca il suo valore in 0). Eppure, per ogni coppia di punti $x_1 < x_2$ assume tutti i valori compresi tra $f(x_1)$ e $f(x_2)$.

6.4 Continuità della funzione inversa

Poniamoci questo problema:

Se una funzione reale di variabile reale (cio è una funzione $A \xrightarrow{f} B$, con $A, B \subset \mathbb{R}$) è continua e invertibile, la sua funzione inversa è necessariamente continua?

Una funzione invertibile, continua e con inversa continua, si chiama *omeomorfismo*. Quindi il problema si puøformulare in questo modo:

Una funzione invertibile e continua è necessariamente un omeomorfismo?

In generale, la risposta è no, come mostra il seguente esempio.

Esempio. Definiamo una funzione $A \xrightarrow{f} B$ nel modo seguente. Il dominio di $f \in A = [0, 1) \cup [2, 3]$, il codominio di $f \in B = [0, 2]$ e, per ogni x del dominio,

$$f(x) = \begin{cases} x & \text{se } 0 \le x < 1\\ x - 1 & \text{se } 2 \le x \le 3 \end{cases}$$

Questa funzione è continua sul suo dominio A, perché è continua in ogni punto di A. Inoltre, si vede facilmente che è invertibile. La sua inversa $B \xrightarrow{f^{-1}} A$, il cui dominio è B = [0,2] e il cui codominio è $A = [0,1) \cup [2,3]$, è data da

$$f^{-1}(y) = \left\{ \begin{array}{ll} y & \text{se } 0 \leq y < 1 \\ y+1 & \text{se } 1 \leq x \leq 2 \end{array} \right.$$

Si vede allora che f^{-1} non è continua nel punto 1.

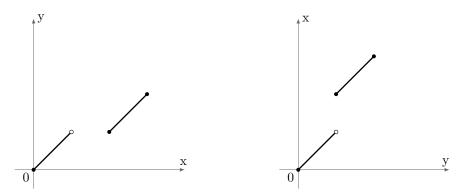


Figura 1: La funzione f (grafico a sinistra) con dominio $[0,1) \cup [2,3]$ e codominio [0,2] è continua e invertibile, ma la sua inversa f^{-1} (grafico a destra), con dominio [0,2] e codominio $[0,1) \cup [2,3]$, non è continua nel punto 1.

Se però f è continua e strettamente monotòna su un *intervallo*, allora la funzione inversa è continua. Vale infatti il seguente teorema.

Teorema 6.6 (Continuità della funzione inversa). ⁵ Sia I un intervallo e sia $I \xrightarrow{f} \mathbb{R}$ una funzione continua e strettamente crescente (oppure strettamente decrescente) su I. Allora la funzione $I \xrightarrow{f} f(I)$ è invertibile e la funzione inversa $f(I) \xrightarrow{f^{-1}} I$ è continua su J = f(I).

Dimostrazione. Supponiamo f strettamente crescente. La funzione $I \xrightarrow{f} f(I)$ è iniettiva, perché f è strettamente crescente, ed è suriettiva, perché il suo codominio J = f(I) è uguale alla sua immagine. Dunque $I \xrightarrow{f} J$ è invertibile, e anche la funzione inversa $J \xrightarrow{f^{-1}} I$ è crescente. Dimostriamo che f^{-1} è continua in ogni punto di J. Fissiamo dapprima un punto w' che sia interno a J. Il punto $w = f^{-1}(w')$ deve essere allora interno a I. Sia $\varepsilon > 0$ arbitrario, ma sufficientemente piccolo perché l'intervallino $I_{\varepsilon} = (w - \varepsilon, w + \varepsilon)$ sia tutto contenuto in J.

Poiché f è crescente,

$$w - \varepsilon < w < w + \varepsilon \implies f(w - \varepsilon) < w' < f(w + \varepsilon)$$
 (6.4)

e quindi l'intervallino $I_{\varepsilon}'=(f(w-\varepsilon),f(w+\varepsilon))$ è un intorno di w'. Poiché anche la funzione f^{-1} è crescente,

$$f(w - \varepsilon) < y < f(w + \varepsilon) \implies w - \varepsilon < f^{-1}(y) < w + \varepsilon$$
 (6.5)

Questo significa che ogni punto y dell'intorno $(f(w-\varepsilon), f(w+\varepsilon))$ di w' viene mandato in $I_{\varepsilon} = (w-\varepsilon, w+\varepsilon)$.

Riassumiamo: abbiamo dimostrato che, fissato ad arbitrio un intorno $(w - \varepsilon, w + \varepsilon)$ di $w = f^{-1}(w')$, esiste un intorno $(f(w - \varepsilon), f(w + \varepsilon))$ di w' che viene trasformato da f^{-1} in $(w - \varepsilon, w + \varepsilon)$. Per la definizione stessa di continuità, possiamo concludere che f^{-1} è continua in w'.

 $^{^5{\}mbox{Teorema}}$ enunciato a lezione, ma non dimostrato.

Il ragionamento si modifica in modo ovvio nel caso il punto w' sia un estremo di J. Basterà considerare intorni soltanto sinistri o destri. Supponiamo ad esempio che w' sia l'estremo superiore di J. Allora, poiché f^{-1} è crescente, anche $w = f^{-1}(w')$ è l'estremo superiore dell'intervallo J. Preso $\varepsilon > 0$ arbitrario, consideriamo l'intorno sinistro $(w - \varepsilon, w]$ di w. La funzione f^{-1} , essendo crescente, trasforma l'intorno sinistro $(f(w - \varepsilon), w')$ di w' nell'intorno sinistro $(w - \varepsilon, w]$ di w. Questo prova che f^{-1} è continua in w'.

Esempi. In questi esempi, supponiamo che siano già conosciute le definizioni delle funzioni sin, cos e tan, e che si sappia che sono funzioni continue.

1) La funzione

$$[-\pi/2,\pi/2] \xrightarrow{\sin} [-1,1]$$

è strettamente crescente (quindi iniettiva) e suriettiva. Dunque è invertibile. Inoltre la funzione sin è continua. Quindi, per il teorema sulla continuità della funzione inversa, anche la sua inversa

$$[-1,1] \stackrel{\arcsin}{\longrightarrow} [-\pi/2,\pi/2]$$

detta arcoseno, è continua.

2) La funzione

$$[0,\pi] \xrightarrow{\cos} [-1,1]$$

è strettamente decrescente (quindi iniettiva) e suriettiva. Dunque è invertibile. Per il teorema sulla continuità della funzione inversa, la sua inversa

$$[-1,1] \stackrel{\arcsin}{\longrightarrow} [-\pi/2,\pi/2]$$

detta arcoseno, è continua.

3) In modo analogo, la funzione

$$(-\pi/2,\pi/2) \xrightarrow{\tan} \mathbb{R}$$

è invertibile e continua. Quindi la funzione inversa

$$\mathbb{R} \stackrel{\arctan}{\longrightarrow} (-\pi/2, \pi/2)$$

(detta arcotangente) è continua.

4) La funzione elevamento a quadrato

$$[0, +\infty) \xrightarrow{f=(-)^2} [0, +\infty), \qquad f(x) = x^2$$

è continua sull'intervallo $[0, +\infty)$ ed è invertibile. Dunque, per il teorema sulla continuità della funzione inversa, la sua inversa, che è la funzione radice quadrata

$$[0, +\infty) \xrightarrow{\sqrt{(-)}} [0, +\infty), \qquad g(x) = \sqrt{x}$$

è continua.

Nello stesso modo si dimostra la continuità di tutte le funzioni $\sqrt[n]{(-)}$ (radici n-esime).

6.4.1 La funzione radice quadrata

Vediamo ora come utilizzare le proprietà delle funzioni continue per definire opportunamente la funzione radice quadrata, e dimostrarne la continuità. Partiamo dalla funzione elevamento a quadrato:

$$[0, +\infty) \xrightarrow{f} [0, +\infty), \qquad f(x) = x^2$$

$$(6.6)$$

per ogni $x \in [0, +\infty)$. Ovviamente f è continua. Dico che questa funzione f è invertibile (in modo equivalente: è sia iniettiva, sia suriettiva). Dimostrare l'iniettività è facile: f è strettamente crescente⁶, e quindi è iniettiva. Dimostrare che f è suriettiva è meno immediato. La suriettività di f è una conseguenza del Teorema dei Valori Intermedi, cioè del fatto che f trasforma intervalli in intervalli. Infatti, prendiamo un intervallo $I_n = [0, n], n \in \mathbb{N}$. L'immagine $f(I_n)$ di questo intervallo,

$$f(I_n) = \{f(x), x \in [0, n]\}$$

è ancora un intervallo contenuto in $[0, +\infty)$ (perché f, essendo continua, trasforma intervalli in intervalli). Quindi l'immagine Im (f) di f è un intervallo contenuto in $[0, +\infty)$ (perché f è continua e il suo dominio un intervallo), e deve includere ogni intervallo del tipo $I_n = [0, n]$, $n \in \mathbb{N}$. Quindi Im (f) deve coincidere con $[0, +\infty)$, cioè f deve essere suriettiva.

In conclusione, f è invertibile e la sua inversa si chiama funzione radice quadrata

$$[0, +\infty) \xrightarrow{g} [0, +\infty), \qquad x \longmapsto \sqrt{x}$$
 (6.7)

per ogni $x \in [0, +\infty)$. Per il teorema 6.6 sulla continuità della funzione inversa, possiamo concludere che la funzione radice quadrata che abbiamo sopra definito è continua.

6.5 Teorema di Weierstrass

Ora enunciamo e dimostriamo il teorema di Weierstrass in un caso particolare: quello di funzioni reali definite su un intervallo [a, b] chiuso e limitato (intervallo compatto).

Si ricordi che una funzione a valori reali si dice limitata se la sua immagine Im(f) è un sottoinsieme limitato di \mathbb{R} , cioè se vale la seguente condizione:

Esiste un numero $H \in \mathbb{R}$, tale che, per ogni x nel dominio di f, $|f(x)| \leq H$.

Teorema 6.7 (Weierstrass). Una funzione $[a,b] \xrightarrow{f} \mathbb{R}$ continua su un intervallo compatto (cio è chiuso e limitato) I = [a,b] è limitata. Inoltre esistono nell'intervallo I un punto nel quale la funzione assume il suo valore massimo e un punto nel quale la funzione assume il suo valore minimo.

In termini più espliciti, la tesi afferma che esistono in [a, b] (almeno) un punto p e (almeno) un punto q per i quali si ha, per ogni $x \in [a, b]$,

$$f(q) \le f(x) \le f(p) \tag{6.8}$$

⁶Infatti, se x_1, x_2 sono non negativi e $x_1 < x_2$, allora $f(x_1) = x_1^2 < x_2^2 = f(x_2)$.

Osservazione. Il teorema di Weierstrass si può enunciare nel modo seguente:

Teorema 6.8. Se $[a,b] \xrightarrow{f} \mathbb{R}$ è una funzione continua su un intervallo compatto (cio è chiuso e limitato) I = [a,b], allora la sua immagine f(I) è l'intervallo compatto:

$$f([a,b]) = [m,M] (6.9)$$

dove $m \in M$ sono il minimo valore e il massimo valore di f sul suo dominio I = [a, b].

In realtà, che f([a,b]) sia un *intervallo* è già noto: è il teorema dei valori intermedi. Il contenuto del teorema di Weierstrass consiste invece nell'affermare che l'immagine è *compatta*, cioè che deve essere un intervallo del tipo [m,M], perché gli unici intervalli compatti sono di questo tipo.

Osservazione. Osserviamo che se f fosse definita e continua su un intervallo non chiuso o su un intervallo non limitato, la tesi non sarebbe più vera. Ad esempio, si consideri la funzione f(x) = 1/x sull'intervallo (limitato ma) non chiuso (0,1] o la funzione $f(x) = x^2$ sull'intervallo (chiuso ma) non limitato $[0, +\infty)$.

Dimostrazione. (Teorema di Weierstrass). Dimostriamo che f assume in [a,b] un valore massimo. (In modo analogo si dimostra che assume il valore minimo). Denotiamo con L l'estremo superiore di f su [a,b]:

$$L = \sup_{[a,b]} f = \sup\{f(x) \mid x \in [a,b]\}$$

A priori, non possiamo escludere che L sia $+\infty$; ma la dimostrazione ci dirà che L è un numero reale (cio è che f è superiormente limitata) e che esiste un punto $p \in [a,b]$ nel quale f(p) = L.

Dividiamo l'intervallo [a, b] in due intervalli mediante il punto medio c. È ovvio che in almeno uno dei due intervalli [a, c] e [c, b] l'estremo superiore di f deve essere L. Chiamiamo $I_1 = [a_1, b_1]$ quello dei due intervalli in cui l'estremo superiore di f è uguale a L (o uno qualunque dei due, se entrambi soddisfano questa condizione) e iteriamo il procedimento. Otteniamo in questo modo una successione $I_n = [a_n, b_n]$ di intervalli compatti inscatolati, su ciascuno dei quali l'estremo superiore di f è L, e le cui ampiezze $(b-a)/2^n$ tendono a zero. Per il teorema degli intervalli compatti inscatolati, la successione di intervalli $I_n = [a_n, b_n]$ definisce un numero reale p che appartiene all'intervallo [a, b] (Precisamente, p è l'unico punto

$$L_1 = \sup_{[a,c]} f$$
 e $L_2 = \sup_{[c,b]} f$

Si ha $L_1 \leq L$ e $L_2 \leq L$. Supponiamo per assurdo $L_1 < L$ e $L_2 < L$. Da

$$f(x) \le L_1$$
 per ogni $x \in [a, c]$ $f(x) \le L_2$ per ogni $x \in [c, b]$

si ricava che, per ogni $x \in [a, b]$,

$$f(x) \le \max\{L_1, L_2\} < L$$

contro l'ipotesi che L sia la minima limitazione superiore.

⁷Dimostriamolo. Poniamo

che appartiene a tutti gli intervalli I_n). Dimostriamo che nel punto p la funzione f assume il suo valore massimo.

Poiché f è continua in p, fissato un $\varepsilon > 0$ esiste un $\delta > 0$ tale che per tutti gli $x \in (p-\delta, p+\delta)$ si ha $f(p) - \varepsilon < f(x) < f(p) + \varepsilon$. In particolare, ci interessa la seconda diseguaglianza:

$$\forall x \in (p - \delta, p + \delta) \qquad f(x) < f(p) + \varepsilon \tag{6.10}$$

Poiché definitivamente (cioè, per tutti gli n abbastanza grandi) $I_n \subset (p - \delta, p + \delta)$, si ha

$$\forall x \in I_n \qquad f(x) < f(p) + \varepsilon \tag{6.11}$$

La (6.11) dice che $f(p) + \varepsilon$ è una limitazione superiore per l'insieme $\{f(x), x \in I_n\}$ (per n sufficientemente grande). Poiché $f(p) + \varepsilon$ è una limitazione superiore e $L = \sup_{I_n} f$ è, per definizione, la minima limitazione superiore, si deve avere

$$L \le f(p) + \varepsilon \tag{6.12}$$

Del resto, poiché $L = \sup f$ è una (particolare) limitazione superiore di f, si ha in particolare

$$f(p) \le L \tag{6.13}$$

Riassumendo, abbiamo allora:

$$\forall \varepsilon > 0 \qquad f(p) \le L \le f(p) + \varepsilon$$
 (6.14)

Poiché ε è arbitrario, si ricava L = f(p), e con questo la dimostrazione è conclusa.

Q.E.D.

Osservazione 1. Questa dimostrazione può sembrare molto simile a quella del teorema degli zeri di una funzione continua (metodo di bisezione). Ma c' è una sostanziale differenza. La dimostrazione con il metodo della bisezione del teorema di Weierstrass non è costruttiva, ma è puramente esistenziale cio è non fornisce un algoritmo per trovare un punto di massimo. Infatti non abbiamo un algoritmo per decidere (a ogni passaggio) quale dei due intervallini scegliere, cio è non sappiamo come decidere su quale dei due intervallini il sup di f coincide con il sup di f sull'intero [a, b].

Osservazione 2. Il teorema di Weierstrass vale più in generale per funzioni continue su sottoinsiemi compatti di \mathbb{R} , che non siano necessariamente degli *intervalli* compatti:

Teorema 6.9 (di Weierstrass, 1861). Sia $K \xrightarrow{f} \mathbb{R}$ una funzione continua su un compatto K di \mathbb{R}^n . Allora f è limitata e inoltre assume su K il suo valore massimo e il suo valore minimo.