Il campo ordinato completo $\mathbb R$ dei numeri reali Presentazione assiomatica

Contenuto

- Campo ordinato completo.
- Teorema di esistenza di sup e inf.
- Proprietà di Archimede.
- Spazi metrici. Successioni convergenti.
- Successioni monotòne. Intervalli inscatolati. Classi contigue.
- Unicità del limite. Permanenza del segno.

Cosa significa che \mathbb{R} è un campo ?

Definizione (Campo)

Un campo è un insieme con due operazioni binarie, somma e prodotto, che soddisfano:

(Associatività)

$$a + (b + c) = (a + b) + c$$
 $a(bc) = (ab)c$

2 (Commutatività)

$$a+b=b+a$$
 $ab=ba$

- $\exists (Identità) \quad \exists 0,1 \quad a+0=a, \quad a1=a$
- 4 (Inversi) $\forall a \exists (-a) \qquad a + (-a) = 0.$ $\forall a \neq 0 \quad \exists a^{-1} \qquad a a^{-1} = 1.$
- 5 (Distributività) a(b+c) = (ab) + (ac)

Regole di conto

Alcune ben note regole di conto sono semplici conseguenze delle proprietà di campo.

Esercizio

Per ogni $a, b \in \mathbb{R}$ (o in qualunque campo) valgono:

- 1 a 0 = 0. (Quindi: 0 non esiste il reciproco di 0, cioè non si può dividere per 0).
- 2 ("Più per meno fa meno") a(-b) = -(ab).
- 3 ("Meno per meno fa più") (-a)(-b) = ab.
- 4 (Legge di annullamento del prodotto) Se ab = 0, allora o a = 0 oppure b = 0.

Cosa significa che \mathbb{R} è un campo ordinato ?

Nel campo reale $\mathbb R$ è definita una relazione d'ordine totale che è compatibile con la somma e il prodotto. Più precisamente, questo significa che:

- In \mathbb{R} è definita una relazione d'ordine totale:
 - 1 Se $x, y, z \in \mathbb{R}$, x < y e y < z, allora x < z (transitività)
 - **2** Se $x, y \in \mathbb{R}$, vale esattamente una tra:

$$x < y,$$
 $x = y,$ $y < x$ (tricotomia)

- La relazione d'ordine è compatibile con la somma e il prodotto:
 - 1 Se x < y, allora x + z < y + z (per ogni z).
 - 2 Se x < y e z > 0, allora xz < yz.

Esercizio

Per ogni $x \in \mathbb{R}$, si ha $x^2 \ge 0$ (e $x^2 = 0$ solo se x = 0).

Cosa significa che \mathbb{R} è un campo ordinato completo ?

La completezza, proprietà che caratterizza il campo ordinato \mathbb{R} , si può esprimere in diverse forme equivalenti tra loro, tutte molto importanti. Scegliamo come assioma di completezza la Proprietà di Separazione; da questa, dedurremo le altre forme della completezza.

Assioma di completezza (nella forma di Proprietà di Separazione)

Se A e B sono due sottoinsiemi non vuoti di $\mathbb R$ tali che

$$\forall a \in A, \forall b \in B$$
 $a \leq b$

allora esiste (almeno) un $\lambda \in \mathbb{R}$, detto elemento separatore, tale che

$$\forall a \in A, \forall b \in B$$

$$a \le \lambda \le b$$

Definizione di \mathbb{R}

L'approccio assiomatico ai numeri reali conduce allora a questa:

Definizione (Campo dei reali, o retta reale)

Il campo dei numeri reali (o retta reale) $\mathbb R$ è un campo ordinato completo.

Questa definizione è corretta, perché valgono i seguenti due fatti, concettualmente importanti, dei quali omettiamo le dimostrazioni (non difficili, ma laboriose, soprattutto la prima):

- 1) La esistenza di modelli di campo ordinato completo, che si possono costruire, ad esempio, dai razionali, o da $\mathbb N$ (Sezioni di Dedekind, intervalli inscatolati, costruzioni geometriche eccetera).
- 2) La unicità del campo ordinato completo, nel senso che ora illustriamo.

6/30

Cosa significa unicità del campo ordinato completo ${\mathbb R}$

Teorema (Unicità del campo ordinato completo)

Due campi ordinati completi sono isomorfi.

Precisamente, si dimostra che se K e K' sono campi ordinati completi, allora esiste un *isomorfismo* (e uno solo) da K a K', cioè esiste una (unica) applicazione *biunivoca* $f: K \longrightarrow K'$, che *preserva la somma, il prodotto e l'ordinamento*:

$$f(x+y) = f(x) + f(y)$$

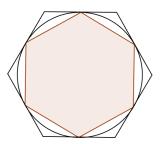
$$f(xy) = f(x)f(y)$$

$$x \le y \implies f(x) \le f(y)$$
(1)

Due campi ordinati completi K e K' si possono dunque identificare tra loro, cioè si considerano come "lo stesso" campo.

Poligoni regolari circoscritti e inscritti in una circonferenza. (Archimede, La Misura del Cerchio).

Un esempio guida importante per i prossimi concetti: limitazioni superiori, limitazioni inferiori, sup, inf, successioni monotòne, classi contigue, intervalli inscatolati eccetera.



Se I_n , L_n sono i perimetri degli n-goni regolari inscritti e circoscritti a una circonferenza, si ha:

 $I_n < Lunghezza della Circonferenza < L_n$

Definizioni

Definizione

Sia $E \subset \mathbb{R}$ non vuoto.

- **1** E è limitato superiormente se $(\exists \beta \in \mathbb{R}) (\forall x \in E)$ $x \leq \beta$ Un tale numero β è allora una limitazione superiore di E.
- **2** Se β è una limitazione superiore di E e inoltre $\beta \in E$, si dice che β è il massimo di E, e si scrive $\beta = \max E$.
- 3 E è limitato inferiormente se $(\exists \alpha \in \mathbb{R}) (\forall x \in E)$ $\alpha \leq x$ Un tale numero α è allora una limitazione inferiore di E.
- 4 Se α è una limitazione inferiore di E e inoltre $\alpha \in E$, si dice che α è il minimo di E, e si scrive $\alpha = \min E$.
- **5** E si dice limitato se è sia limitato superiormente, sia limitato inferiormente.

Esistenza dell'estremo superiore

Teorema (Esistenza della minima limitazione superiore (sup))

Se E è un sottoinsieme non vuoto di $\mathbb R$ limitato superiormente, l'insieme delle limitazioni superiori ha sempre un minimo.

Definizione (Estremo superiore)

Se $E \subset \mathbb{R}$ è non vuoto e limitato superiormente, la minima limitazione superiore di E si denota sup E e si chiama estremo superiore di E. Il numero $s=\sup E$ è caratterizzato dalle proprietà:

$$i) \ \forall x \in E \qquad x \le s$$

ii)
$$(\forall s' < s) (\exists x \in E)$$
 $x > s'$

Se $E \subset \mathbb{R}$ non è superiormente limitato, si pone sup $E = +\infty$

Dimostrazione dell'esistenza del sup.

Denotiamo

$$Z = \{ z \in \mathbb{R} \mid \forall x \in E \quad x \le z \}$$
 (2)

l'insieme di tutte le limitazioni superiori di E. (L'insieme Z non è vuoto, perché, per ipotesi, E è superiormente limitato). Per l'assioma di completezza (Proprietà di Separazione), esiste un numero λ che soddisfa le due disuguaglianze

$$(\forall x \in E) \ (\forall z \in Z) \qquad x \le \lambda \le z \tag{3}$$

La prima disuguaglianza $\forall x \in E \quad x \leq \lambda$ dice che λ è una limitazione superiore di E. La seconda disuguaglianza $\forall z \in Z \quad \lambda \leq z$ dice che λ è la minima limitazione superiore di E. Q.E.D.

Esistenza dell'estremo inferiore

In modo del tutto analogo, si dimostra l'esistenza dell'estremo inferiore.

Teorema (Esistenza della massima limitazione inferiore (inf))

Se E è un sottoinsieme non vuoto di \mathbb{R} limitato inferiormente, l'insieme delle limitazioni inferiori ha sempre un massimo.

Definizione (Estremo inferiore)

Se $E \subset \mathbb{R}$ è non vuoto e limitato inferiormente, la massima limitazione inferiore di E si denota inf E e si chiama estremo inferiore di E. Il numero $i = \inf E$ è caratterizzato dalle proprietà:

$$i) \forall x \in E \qquad i \leq x$$

$$(\forall i' > i) (\exists x \in E)$$
 $x < i'$

Se $E \subset \mathbb{R}$ non è inferiormente limitato, si pone inf $E = -\infty$

La proprietà di Archimede

I numeri naturali sono gli interi non negativi: 0, 1, 1+1=2, 1+1+1=3,

Teorema (Proprietà di Archimede. Prima versione)

L'insieme $\mathbb N$ dei naturali non è limitato superiormente.

DIMOSTRAZIONE Supponiamo che $\mathbb N$ sia limitato superiormente. Sia $L=\sup\mathbb N$. Siccome L è la minima limitazione superiore, L-1 non è una limitazione superiore per $\mathbb N$, cioè: $\exists N_0\in\mathbb N$ tale che $N_0>L-1$. Ma allora $N_0+1>L$. Assurdo. ($N_0+1\in\mathbb N$ non può essere maggiore di $L=\sup\mathbb N$.)

Teorema (Proprietà di Archimede. Seconda versione)

Siano a, $b \in \mathbb{R}$ positivi, a < b. Allora esiste un numero naturale n tale che na > b

Si dimostra facilmente per assurdo. [Esercizio]

${\mathbb R}$ è anche uno spazio metrico

Definizione (Distanza in \mathbb{R})

La distanza tra due punti $x, y \in \mathbb{R}$ è definita nel modo seguente:

$$d(x,y)=|x-y|$$

Proprietà della distanza

Per tutti gli $x, y, z \in \mathbb{R}$:

- **2** d(x, y) = d(y, x)
- $d(x,y) \leq d(x,z) + d(z,y)$

Definizione

Diciamo che \mathbb{R} , munito della distanza d, è uno spazio metrico.

Successioni

Definizione

Si chiama successione in un insieme A (o di elementi di A) una funzione

$$\mathbb{N} \stackrel{a}{\longrightarrow} A$$

il cui dominio è l'insieme $\mathbb{N} = \{0, 1, 2, 3, 4,\}$ dei numeri naturali e il cui codominio è A.

Alcuni dei modi per denotare una successione:

$$(a_n)_{n\in\mathbb{N}}$$
 (a_n) a_n

eccetera.

Successioni convergenti in $\mathbb R$

Definizione

Siano (a_n) una successione in \mathbb{R} , $L \in \mathbb{R}$. Allora (a_n) converge a L (o tende a L, o ha per limite L) e si scrive

$$a_n \to L,$$
 $\lim_{n \to +\infty} a_n = L$

se per ogni $\varepsilon > 0$ esiste $N_0 \in \mathbb{N}$ tale che, per ogni $n \in \mathbb{N}$,

$$n > N_0 \implies |a_n - L| < \varepsilon$$

In simboli,

$$\frac{\lim_{n\to+\infty} a_n = L}{\text{significa:}}$$

$$(\forall \varepsilon > 0) \, (\exists N_0 \in \mathbb{N}) \, (\forall n \in \mathbb{N}) \qquad n > N_0 \implies |a_n - L| < \varepsilon$$

Riformulazione (equivalente) di convergenza

Definizione (Modo equivalente di definire la convergenza)

Sia (a_n) una successione in \mathbb{R} e sia $L \in \mathbb{R}$.

$$\lim_{n\to+\infty}a_n=L$$

se, per ogni $\varepsilon > 0$,

$$|a_n - L| < \varepsilon$$
 DEFINITIVAMENTE

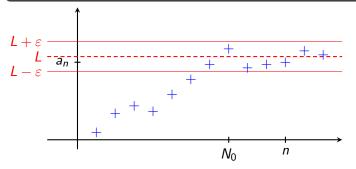
cioè, per tutti gli n sufficientemente grandi.

L'avverbio 'definitivamente' ha qui un signficato tecnico preciso. Significa: per tutti gli n sufficientemente grandi, o per tutti gli n 'da un certo punto in poi'. In altri termini, $(a_n) \to L$ se, per ogni $\varepsilon > 0$, vale $|a_n - L| < \varepsilon$ per tutti gli $n \in \mathbb{N}$, tranne un numero finito.

Una traduzione geometrica

$$(a_n) \to L$$
 significa:

$$(\forall \varepsilon > 0) (\exists N_0 \in \mathbb{N}) (\forall n \in \mathbb{N}) \qquad n > N_0 \implies |a_n - L| < \varepsilon$$



Esempio: Un limite importante

Teorema

$$\lim_{n\to+\infty}\frac{1}{n}=0$$

DIMOSTRAZIONE Segue dalla Proprietà di Archimede. Sia $\varepsilon > 0$. Esiste N tale che $N > 1/\varepsilon$. (Tale N esiste perché $\mathbb N$ non è limitato superiormente). Allora per ogni $n \ge N$, abbiamo $0 < 1/n \le 1/N < \varepsilon$, e quindi $|1/n - 0| < \varepsilon$. (Le parti scritte in rosso corrispondono alla definizione di convergenza).

3) Proprietà delle successioni monotòne limitate

Teorema (Successioni monotòne limitate)

Sia (a_n) una successione in $\mathbb R$ monotòna crescente (in senso lato)

$$a_1 \leq a_2 \leq a_3 \leq \cdots \leq a_n \leq a_{n+1} \leq \cdots$$

e superiormente limitata. Allora essa converge in \mathbb{R} a un limite finito, che è l'estremo superiore dell'insieme dei suoi elementi.

Applicazione: Il numero e di Napier

Si dimostra che la successione in $\mathbb R$

$$a_n = \left(1 + \frac{1}{n}\right)^n \tag{4}$$

è crescente e limitata. Dunque, in \mathbb{R} converge. Il suo limite si denota e, è un numero irrazionale (e = 2.718281...).

Dimostrazione (Successioni monotòne)

an

*a*₁

 $I-\varepsilon$

 a_k

 a_n

Poniamo $A = \{a_n, n \in \mathbb{N}\}$ e poniamo $L = \sup A$. (Per la completezza di \mathbb{R} , sup A esiste finito). Prendiamo un $\varepsilon > 0$.

■ $L - \varepsilon < L$ e dunque $L - \varepsilon$ non è una limitazione superiore di A. Cioè.

$$\exists k \in \mathbb{N}$$

$$\exists k \in \mathbb{N}$$
 $L - \varepsilon < a_k$

■ La successione (a_n) è non decrescente. Quindi, per ogni n > k

$$L - \varepsilon < a_k \le a_n$$

e quindi, per ogni n > k,

$$L-\varepsilon < a_n \leq L$$

(perché $a_n \leq L$, per ogni n).

Allora, per l'arbitrarietà di ε , (a_n) converge a L.

Q.E.D.

Proprietà degli intervalli compatti inscatolati

DEFINIZIONE Se $a \le b$, l'insieme $[a,b] = \{x \in \mathbb{R} \mid a \le x \le b\}$ si chiama intervallo chiuso e limitato, o intervallo compatto.

Teorema (Intervalli compatti inscatolati)

Sia $I_n = [a_n, b_n] \subset \mathbb{R}$ una successione di intervalli compatti (cioè, chiusi e limitati) inscatolati:

$$I_0 \supseteq I_1 \supseteq \cdots \supseteq I_n \supseteq \cdots \tag{5}$$

Allora:

- **1** Esiste almeno un punto che appartiene a tutti gli intervalli I_n : $\bigcap_{n \to \infty} I_n \neq \emptyset.$
- **2** Se $(b_n a_n) \to 0$, allora esiste un unico punto $c \in \mathbb{R}$ che appartiene a tutti gli intervalli I_n , $n \in \mathbb{N}$:

$$\bigcap_{n=0}^{+\infty} I_n = \{1 \text{ punto}\} = \{c\}$$

Osservazione

Per meglio apprezzare l'enunciato del teorema sugli intervalli compatti, vediamo dapprima cosa succede con intervalli non compatti.

PROBLEMA Per *n* intero positivo, poniamo

$$J_n = \left(0, \frac{1}{n}\right) = \left\{x \in \mathbb{R} \mid 0 < x < \frac{1}{n}\right\}$$

Esistono punti che appartengono a J_n per ogni $n \in \mathbb{N}$? Detto altrimenti, a cosa è uguale l'intersezione

$$\bigcap_{n=0}^{+\infty} J_n ?$$

RISPOSTA. \emptyset . (Dimostrarlo in modo rigoroso).

Dimostrazione. (Intervalli compatti inscatolati)

$$\alpha = \lambda = \beta \quad (\text{se } (b_n - a_n) \to 0)$$

$$a_0 \quad a_1 \quad a_{n-1} \quad a_n \quad \alpha \beta \quad b_n \quad b_{n-1} \quad b_1 \quad b_0$$

$$a_0 \leq a_1 \leq \cdots \leq a_n \leq a_{n+1} \leq \cdots \leq b_{n+1} \leq b_n \leq \cdots b_1 \leq b_0$$

1) Poniamo: $A = \{a_n, n \in \mathbb{N}\}$, $B = \{b_m, m \in \mathbb{N}\}$ Per ogni $n, m, a_n < b_m$. Quindi A è limitato superiormente (un qualunque $b_m \in B$ è una limitazione superiore di A) e B è limitato inferiormente. Poniamo sup $A = \alpha$ e inf $B = \beta$. (Qui si usa la completezza). Ovviamente, $a_n \le \alpha \le \beta \le b_m$. In particolare, per

$$n = m$$
, vale $a_n \le \alpha \le \beta \le b_n$. Quindi $\bigcap_{n=0}^{+\infty} I_n = [\alpha, \beta] \ne \emptyset$.

2) Supponiamo ora: $(b_n - a_n) \to 0$. Dico che allora $\alpha = \beta$. Infatti, supponiamo che sia $\alpha < \beta$. Abbiamo già visto che, per ogni n, vale $a_n \le \alpha < \beta \le b_n$. Ma allora $b_n - a_n \ge \beta - \alpha > 0$, contro l'ipotesi $(b_n - a_n) \to 0$ Q.E.D.

Esistenza e unicità dell'elemento separatore di due classi contigue di numeri reali.

Definizione

Diremo che (A, B) è una coppia di classi contigue di numeri reali se $A, B \subset \mathbb{R}$ sono sottoinsiemi non vuoti che soddisfano:

- 1 Ogni elemento di A è minore di ogni elemento di B.
- **2** Preso comunque un numero positivo ε , esistono un elemento $b \in B$ e un elemento $a \in A$ per i quali $b a < \varepsilon$.

Teorema (Classi contigue di numeri reali)

Se A e B sono classi contigue di numeri reali, allora esiste un unico $\lambda \in \mathbb{R}$ che soddisfa

$$a \le \lambda \le b$$

 $\textit{per ogni } a \in \textit{A, per ogni } b \in \textit{B}.$

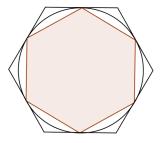
(Dimostrazione: Esercizio.)

Riepilogo: importanti conseguenze dell'assioma di completezza (dato nella forma di proprietà di separazione)

- 1 Esistenza dell'estremo superiore.
- 2 Convergenza delle successioni monotòne limitate.
- 3 Proprietà degli intervalli compatti inscatolati.
- 4 Esistenza e unicità dell'elemento separatore di due classi contigue di numeri reali.

Ciascuna di queste proprietà fornisce un metodo per definire (caratterizzare, individuare) uno specifico numero reale.

L'esempio di Archimede (poligoni inscritti e circoscritti) illustra visivamente ciascuno dei modi visti finora per caratterizzare un numero reale usando le varie forme della completezza di \mathbb{R} .



Se I_n , L_n sono i perimetri degli n-goni regolari inscritti e circoscritti a una circonferenza, si ha:

 $I_n < Lunghezza della Circonferenza < L_n$

https://www.geogebra.org/m/BhxyBJUZ

Unicità del limite. Prima dimostrazione.

Teorema (Unicità del limite)

Una successione in \mathbb{R} ha al più un limite.

DIMOSTRAZIONE. Supponiamo che $a_n \to L'$, $a_n \to L''$ e $L' \neq L''$. Prendiamo $\varepsilon = \frac{1}{2}|L' - L'''| > 0$. Per definizione di convergenza, esistono $K', K'' \in \mathbb{N}$ tali che

$$n > K' \Longrightarrow |a_n - L'| < \varepsilon,$$
 $n > K'' \Longrightarrow |a_n - L''| < \varepsilon$

Poniamo $K = \max\{K', K''\}$. Per ogni $n \ge K$ abbiamo allora:

$$|\underline{L'} - \underline{L''}| = |\underline{L'} - a_n + a_n - \underline{L''}| \le |\underline{L'} - a_n| + |a_n - \underline{L''}| < \varepsilon + \varepsilon = |\underline{L'} - \underline{L''}|$$
(6)

Assurdo. Concludiamo che L' = L''.

Q.E.D.

Teorema (Permanenza del segno, 1)

Siano (a_n) una successione in \mathbb{R} e $L \in \mathbb{R}$. Se $a_n \to L$ e L > 0 (L < 0), allora $a_n > 0$ $(a_n < 0)$ definitivamente.

 $L-\varepsilon$ L $L+\varepsilon$

DIMOSTRAZIONE. Fissiamo $\varepsilon > 0$ in modo tale che $L - \varepsilon > 0$. Ad esempio, $\varepsilon = \frac{L}{3}$. Siccome $a_n \to L$, esiste un numero naturale N_0 tale che, per ogni $n \in \mathbb{N}$ soddisfacente $n > N_0$, si ha:

$$0 < L - \varepsilon < a_n < L + \varepsilon$$

Dunque, per ogni $n > N_0$, si ha $a_n > 0$.

Analogamente: se $a_n \to L$ e L < 0, allora $a_n < 0$ definitivamente.

Q.E.D.

Permanenza del segno, versione 2

Dal teorema di permanenza del segno, segue subito:

Teorema (Permanenza del segno, 2)

- 1) Se $(a_n) \to L$ e $a_n > 0$ per ogni n, allora $L \ge 0$.
- 2) Se $(a_n) \rightarrow L$ e $a_n < 0$ per ogni n, allora $L \leq 0$.

DIMOSTRAZIONE. 1) Infatti, se fosse L < 0 si avrebbe (per il teorema di permanenza del segno, versione 1) $a_n < 0$ definitivamente, contro l'ipotesi.

Analogamente si dimostra il punto 2).

Osservazione Si noti che $a_n > 0$, $a_n \to L$, non implica L > 0. (Esempio: $\frac{1}{n} \to L = 0$).