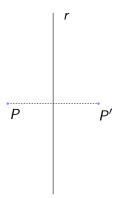
Breve introduzione informale alle isometrie del piano

Bibliografia: John Stillwell, *The Four Pillars of Geometry*, Springer 2005. (Ebook del Politecnico di Milano, scaricabile dal sito del Polimi).

Esempi di isometrie del piano. 1) Riflessioni in rette.

La riflessione S_r in una retta r, o simmetria assiale di asse r, è l'isometria del piano che lascia fisso ogni punto di r e scambia tra loro i due semipiani individuati dalla retta r. Una riflessione inverte l'orientazione.



Esempio: Nel piano \mathbb{C} , $z \longmapsto \overline{z}$ è la riflessione nell'asse dei reali.

Esempi di isometrie del piano. 2) Rotazioni nel piano.

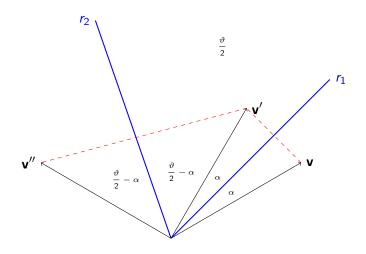
L'identità è una rotazione.

A parte l'identità, una isometria F del piano \mathcal{E}^2 è una rotazione se soddisfa una delle condizioni equivalenti:

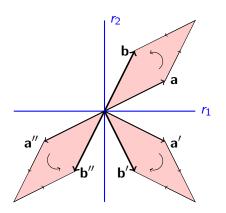
- I F è la composizione $S_{r_2} \circ S_{r_1}$ di due riflessioni rispetto a due (qualunque) rette r_1, r_2 , incidenti nel punto O e formanti un angolo $\vartheta/2$. In questo caso, F è una rotazione di centro O e ampiezza ϑ .
 - Oppure:
- **2** *F* ha un unico punto fisso (il centro di rotazione).

Al contrario delle riflessioni, le rotazioni preservano l'orientazione (Sono dette 'isometrie dirette').

Composizione di due riflessioni rispetto a due rette che formano un angolo $\vartheta/2~=~$ Rotazione di ϑ



La composizione di un numero pari di riflessioni preserva l'orientazione



Le riflessioni S_{r_1} e S_{r_2} invertono l'orientazione; la rotazione $S_{r_2} \circ S_{r_1}$ preserva l'orientazione.

Esempi di isometrie del piano. 3) Traslazioni.

- Intuitivamente: Una traslazione è una trasformazione del piano che sposta tutti i punti nella medesima direzione, nel medesimo verso, e di una medesima lunghezza. Se un punto P viene mandato nel punto P', lo spostamento, lo spostamento è individuato dal vettore (o segmento orientato) PP'.
- In modo preciso: Una traslazione è la composizione S_{r2} ∘ S_{r1} di due riflessioni in due rette r₁ e r₂ tra loro parallele.
 Se il vettore ortogonale da r₁ a r₂ è v, la composizione S_{r2} ∘ S_{r1} è la traslazione del vettore 2v.
- Se $\mathbf{v} \in \mathbb{C}$, la traslazione $T_{\mathbf{v}}$ manda z in $T_{\mathbf{v}}(z) = z + \mathbf{v}$.

6/9

Esempi di isometrie del piano. 4) Glisso-riflessioni.

- Una glisso-riflessione è la composizione di una riflessione in una retta r, seguita da una traslazione di un vettore parallelo alla retta r. (Esempio: Impronte dei piedi sulla neve.)
- Una glisso-riflessione è composizione di tre riflessioni: una riflessione in una retta r_1 , seguita da una riflessione rispetto a una retta r_2 perpendicolare a r_1 , seguita dalla riflessione in una retta r_3 parallela a r_2 .
- Una riflessione è un caso particolare di glisso-riflessione: precisamente, è una glisso-riflessione la cui componenete traslazionale è l'identità.
- Una glisso-riflessione è una isometria che inverte l'orientazione. Infatti, è composizione di un numero dispari (1 o 3) di riflessioni.

Teorema delle tre Riflessioni. Classificazione delle isometrie del piano.

Teorema (delle tre Riflessioni)

Ogni isometria del piano euclideo è composizione di al più tre riflessioni.

Teorema (Classificazione delle isometrie del piano euclideo)

Ogni isometria del piano euclideo è una rotazione, oppure una traslazione, oppure una glisso-riflessione (in particolare, una riflessione).

Bibliografia: John Stillwell, *The Four Pillars of Geometry*, Springer 2005. (Ebook del Politecnico di Milano, scaricabili dalla rete).

8/9

Isometrie del piano con l'uso dei numeri complessi

Teorema (Isometrie del piano \mathbb{C})

Le isometrie $\mathbb{C} \stackrel{f}{\longrightarrow} \mathbb{C}$ del piano complesso sono dei due tipi seguenti:

- 1) $f(z) = uz + w_0$, con $u \in S^1$ (cioè, |u| = 1) e $w_0 \in \mathbb{C}$. (Isometrie dirette, cioè che preservano l'orientazione: rotazioni e traslazioni.)
- 2) $f(z) = u\overline{z} + w_0$, con $u \in S^1$ (cioè, |u| = 1) e $w_0 \in \mathbb{C}$. (Isometrie che invertono l'orientazione: glisso-riflessioni)